
GridGain and Azul Systems:
The Industry’s Highest Performance

In-Memory Computing Platform for

Real-Time Data Processing

The GridGain®in-memory computing platform accelerates
and scales out data-intensive applications across a
distributed, JVM-based computing architecture.
GridGain solves the performance needs of companies
launching digital transformation, omnichannel customer
experience, Internet of Things, and similar data-
intensive initiatives. GridGain is built on Apache Ignite®,
which was originally contributed to the Apache Software
Foundation (ASF) by GridGain Systems. Ignite is a top
�ve ASF project and has been downloaded over four
million times since the project launched in 2014.

GridGain can massively scale out to thousands
of nodes and power millisecond performance for
petabytes of in-memory and on-disk data. It supports
multiple access APIs, including ANSI-99 SQL and
key-value, and supports ACID transactions. GridGain is
used for real-time transactions, hybrid transactional/
analytical processing (HTAP), and high performance
data integration hub use cases for companies in the
�nancial services, telecommunications, software/
SaaS, healthcare, transportation and logistics, and
many additional industries.

The high performance GridGain platform is ideal for
digital transformation use cases. However, some low
latency/high transaction volume scenarios, such as in
the �nancial services and telecommunications indus-
tries, strain the capabilities of standard Java Virtual
Machines (JVMs). GridGain keeps all the in-memory
data it caches in unbound, off-heap regions of memory.
Java on-heap memory is utilized extensively by tempo-
rary objects generated by applications in runtime,
though. Traditional JVMs can struggle to deliver the low
latency required for certain transaction-intensive

applications. In those speci�c use cases, GridGain
users may need to scale out the number of nodes in
their cluster in order to parallelize the workload.

The alternative to adding more parallelization to the
cluster is Azul Zing®, a 100% Java-compatible JVM
based on Oracle HotSpot. Unlike traditional JVMs, Zing
decouples application performance from the amount of
data kept in-memory in the Java heap. Zing is unique in
its ability to provide high performance and low latency
for memory-intensive applications. Zing is able to grow
and shrink the memory heap elastically based on
real-time application demands. The Azul C4 garbage
collection algorithm is also able to limit JVM-related
pauses to less than 30 milliseconds.

Running GridGain on Zing allows enterprises to
increase the on-heap memory allocated on each
GridGain node. High transaction applications generate
signi�cant Java garbage but it is cleared ef�ciently by
Zing. As a result, GridGain users can avoid adding
extra nodes to overcome the typical JVM garbage
collection challenges while maintaining consistently
low latency by avoiding JVM garbage collection pauses.
This allows GridGain users with applications with high
read/write requirements that need low latency with low
jitter to achieve their SLAs with minimal infrastructure
expenditures.

Real-Time Business with GridGain and Azul Zing
In-memory computing (IMC) platforms can power very
low latency, massively scalable applications for large
datasets. However, the IMC platform must be able to
hold and process large amounts of data in-memory
with highly controlled and limited JVM-related garbage
collection pauses. The GridGain platform running with
Azul Zing delivers the necessary performance for very
low latency transactional, HTAP and high-performance
data integration hub applications.

No Consistency or Durability Sacrifices
Low latency use cases can typically bene�t from
in-memory computing but often cannot accept data
loss or inconsistency. In some cases, it may be

Running GridGain on Zing allows
enterprises to increase the on-
heap memory allocated on each
GridGain node.

https://www.gridgain.com/technology/in-memory-computing-platform
https://www.gridgain.com/experience/digital-transformation
https://www.gridgain.com/experience/digital-transformation
https://www.gridgain.com/experience/digital-transformation
https://www.gridgain.com/experience/internet-of-things

GridGain and Azul Systems

2

impractical or unaffordable to keep an application’s
entire data set in RAM. Unlike other in-memory
computing platforms, the memory-centric GridGain
architecture can store the entire data set to disk while
maintaining only a subset of the data in memory.
The platform can process the data no matter where it
resides, preferentially processing against the data in
memory. This active disk-based storage tier approach
allows users to trade off performance versus
infrastructure costs. Combined with distributed ACID
transactions, using GridGain with Azul is a highly-opti-
mized computing platform that combines the speed of
memory and the durability guarantees of disk-based
systems with the strong consistency required by many
high-value use cases.

The Zing Approach
Zing uses the continuous concurrent compacting
collector (C4). Unlike the other collectors, C4 is truly
pauseless. Application threads run concurrently
(and quite safely) with the object marking and object
relocation necessary for garbage collection. In addition,
Zing replaces the decades-old C2 JIT compiler with a
modern and modular JIT called Falcon. Based on the
open-source LLVM project, Zing can deliver even more
optimized code that uses the latest processor features
like AVX512 instructions.

Benchmark Results
To benchmark GridGain running with Azul, a three-node
GridGain cluster was connected to a Java application
which performed reads and writes to the cluster. Three
AWS i3en.6xlarge (3.1 GHz Intel Xeon Scalable Skylake
processors) servers were used which had a total of
72 cores, 576 GB RAM, and 45 TB of disk
A number of scenarios were run to compare the
performance of the standard Java G1 collector to C4 in
Zing. The benchmark results were based on use of the
transactional persistence capability in GridGain.

The following credit card processing performance
requirements are typical for banks:
• Each transaction accesses 20 records
• Distributed Transactional Reads
 – Target throughput – 1,000 reads/sec
 – Target latency – 15ms for 99.99th percentile
• Distributed Transactional Updates
 – Target throughput – 2,000 updates/sec
 – Target latency – 50ms for 99.99th percentile
 – RAM and disk must be updated for primary
 and backup copies
Tests were run for two hours each.

JVM latency was measured using jHiccup, a tool
developed by Gil Tene, CTO of Azul Systems. jHiccup
adds an extra thread to the JVM being monitored but
the thread does not need to interact with the applica-
tion code and spends most of its time asleep. The
extra thread repeatedly sleeps for 1ms and records
any difference between when it expected to wake up
and when it actually wakes up. The nanosecond

resolution of the system timer allows highly accurate
readings of the observed difference between expected
and actual wake up time.

For transactional reads, G1 consistently provides about
200ms of latency at the 99.99th percentile. Using Zing
and C4, the system provides 6ms latency at the 99.99th
percentile, with a maximum latency of 15.31ms.

For transactional writes, the latency target is 50ms at
the 99.99th percentile in this case. G1 latency was
slightly worse than with reads, consistently around
250ms (5x the goal) but with some spikes up to
479ms. With Zing and C4, the maximum at the
99.99th percentile was 25.1ms (half the maximum
target) and the maximum latency was 33.87ms, never
exceeding the target latency.

There are several conclusions we can draw from this
data for this use case:
• Zing solves the problem of GC pauses
• Zing combined with GridGain delivers the
 performance needed to support typical credit card
 processing performance parameters consistently
 and predictably
• To meet the goals of this use case with G1 is
 possible using GridGain but would require
 signi�cantly more nodes in the cluster, increasing
 infrastructure costs versus using Zing

Summary
For high transaction read/write applications with low
latency requirements, GridGain used with Zing provides
major performance improvements by eliminating Java
garbage collection pauses. For GridGain users, this can
signi�cantly reduce potential infrastructure costs for high
transaction volume/low latency use cases by reducing
the number of required GridGain nodes to achieve
adequate performance for demanding use cases.

Azul Systems, Inc.
385 Moffett Park Drive, Suite 115
Sunnyvale, CA 94089 USA
+1.650.230.6500
www.azul.com
info@azul.com

Copyright ©2020 Azul Systems, Inc.

GridGain used with Zing provides major
performance improvements by eliminating
Java garbage collection pauses.

https://www.azul.com/products/zing/
https://www.azul.com/products/zing/falcon-jit-compiler/
https://llvm.org
https://en.wikipedia.org/wiki/AVX-512
https://www.azul.com/jhiccup/

