
Apache® Ignite™ and Apache® Spark™: Complementary
In-Memory Computing Solutions
June 20, 2016 by Editorial Team

Apache Ignite is an open source in-memory
data fabric which provides a wide variety of
computing solutions including an in-memory
data grid, compute grid, streaming, as well as
acceleration solutions for Hadoop and Spark.
Apache Spark is an open source fast and
general engine for large-scale data processing.
Although both Ignite and Spark are in-memory
computing solutions, they target different
use cases and are complementary projects.
In many cases, they are used together to
achieve superior performance and functionality.

Ignite in Detail
Apache Ignite is a general-purpose, in-memory
data fabric. Ignite is a data-source-agnostic
platform and can distribute and cache data
across multiple servers in RAM to deliver
unprecedented processing speed and massive
application scalability. Ignite supports any SQL-
based RDBMS, NoSQL, Amazon S3, and Hadoop
HDFS as optional data sources. It powers both
existing and new applications in a distributed,
massively parallel architecture on affordable,
industry-standard hardware.

Apache Ignite includes:
•	 �An in-memory data grid with SQL

and key/value support
•	 An in-memory compute grid
•	 An in-memory service grid
•	 In-memory streaming and CEP
•	 Hadoop plug-n-play acceleration
•	 An in-memory distributed file system
•	 Shared in-memory RDDs for Spark
•	 Events and messaging

Ignite supports high performance transactional,
analytical, and hybrid OLTP/OLAP use cases.
It was originally developed by GridGain Systems
in 2007 and was later contributed to the
Apache Software Foundation. It is based on the
idea of combining multiple types of in-memory
processing under a single umbrella including:

•	 �A distributed in-memory key-value store
with full support for optimistic and
pessimistic ACID transactions

•	 �Advanced data processing and compute
capabilities

•	 �In-memory ANSI-99 SQL queries with
support for distributed joins

•	 Streaming and CEP
•	 Plug-and-play Hadoop acceleration.

Ignite provides its own cluster management
that works across any target environment,
from a single laptop to a LAN/WAN cluster,
to a public cloud provider such as AWS or
Microsoft Azure.

Spark in Detail
Apache Spark is a fast and general engine
for large-scale OLAP processing. It focuses
specifically on non-transactional, read-only,
event-based data and enhancing big data
analytics. It also includes a powerful Machine
Learning Engine (MLE). Apache Spark is
effective at rapidly processing data in-memory
but, unlike Ignite which can work on real-time
operational data, the data must be ETL-ed into
Spark from other operational systems to be
processed later in offline mode.

The Apache Spark open source cluster
computing framework was originally developed
in the AMPLab at UC Berkeley in 2009.
In contrast to Hadoop‘s two-stage, disk-based
MapReduce paradigm, Spark is based on
in-memory data processing and a defined set
of composable primitives providing significant
performance improvements for certain types
of applications. By allowing user programs
to load data into a cluster’s memory and
query it repeatedly, Spark is well suited for
high-performance computing and machine
learning algorithms.

Spark requires a cluster manager and a
distributed storage system. For a cluster

manager, Spark supports its native Spark
cluster manager, Hadoop YARN, and Apache
Mesos. Spark can interface with a wide variety
of distributed storage solutions including
Hadoop Distributed File System (HDFS),
Apache Cassandra, OpenStack Swift,
Amazon S3, and more.

Spark provides distributed task dispatching,
scheduling, and basic I/O functionalities.
The fundamental programming abstraction is
called Resilient Distributed Datasets, a logical
collection of data partitioned across machines.
RDDs can be created by referencing datasets
in external storage systems, or by applying
coarse-grained transformations (e.g. map,
filter, reduce, join) on existing RDDs. RDDs
are read only and do not support transactional
semantics.

Major Differences
�Although both Apache Spark and Apache Ignite
utilize the power of in-memory computing,
they address somewhat different use cases
and rarely “compete” for the same task. Some
conceptual differences:

•	 �Spark doesn’t store data, it loads data for
processing from other storages, usually
disk-based, and then discards the data
when the processing is finished. Ignite,
on the other hand, provides a distributed
in-memory key-value store (distributed
cache or data grid) with ACID transactions
and SQL querying capabilities.

•	 �Spark is for non-transactional, read-
only data (RDDs don’t support in-place
mutation), while Ignite supports both non-
transactional (OLAP) payloads as well as
fully ACID compliant transactions (OLTP)

•	 �Ignite fully supports pure computational
payloads (HPC/MPP) that can be “dataless”.
Spark is based on RDDs and works only on
data-driven payloads.

Home	 Companies	 White Papers	 Regions	 Infrastructure	 Sectors	 Jobs	 Industry Perspectives

News HPC Hardware HPC Software Industry Segments White Papers Resources Events Calendar

	 Originally published on insidebigdata 	 www.insidebigdata.com

website
 as seen on

the

advantages of apache Spark and
apache Ignite together
Shared In-Memory RDDs with Spark Plus Ignite
Apache Spark is built for in-memory processing
of event-driven data. Spark doesn’t provide
any shared storage, so the ETL-ed data must be
loaded from HDFS or another disk storage into
Spark for processing. State is not passed from
Spark job to job without saving the processed
data back into external storage, e.g. HDFS.
Apache Ignite can help Spark users share state
directly in memory, without having to store it
to disk.

One of the main integrati ons for Ignite and
Spark is the Shared RDD API implemented
by Ignite. Spark shared RDDs, which are
essenti ally wrappers around Ignite caches,
can be deployed directly inside of Spark
processes that are executi ng Spark jobs. They
can also be used with the cache-aside patt ern,
where Ignite clusters are deployed separately
from Spark, but sti ll in-memory. The data is sti ll
accessed the same way, using Spark RDD APIs.

Ignite RDDs are used through IgniteContext.
It is the main entry point into Ignite RDDs
and it allows users to specify diff erent Ignite
confi gurati ons. Ignite can be accessed in client
mode or server mode. Users can create new
shared RDDs, which essenti ally means that
new Ignite caches are created with diff erent
confi gurati ons and diff erent indexing strategies.
Ignite supports fully replicated or parti ti oned
caches depending on what kind of parti ti oning
or replicati on strategy is chosen.

Everything that can be done
in Ignite can be done with
IgniteContext by passing a
proper Ignite confi gurati on.
The RDD syntax is nati ve so
it can be accessed using the
nati ve Spark RDD syntax. The
main diff erence with Ignite is
that Ignite RDDs are mutable.
In Spark they are immutable.
Mutable Ignite RDDs enable
them to be updated at the end
of or during every job or task
executi on. It also ensures that
other applicati ons and other
jobs can be noti fi ed and can
read the state.

Faster SQL Queries with Spark Plus Ignite
Apache Spark supports a fairly rich SQL syntax
but it doesn’t index the data. Spark must do full
scans all the ti me because it lacks support for
SQL indexes. Spark queries may take minutes,
even on moderately small data sets. Ignite
supports SQL indexes for faster queries, so
Spark SQL can be accelerated over 1,000x when
using Spark plus Ignite. The result set returned
by Ignite Shared RDDs also supports Spark
Dataframe API, so it can be further analyzed
using standard Spark data frames as well.
Both projects nati vely integrate with Apache
YARN and Apache Mesos so they can easily
be used together.

Shared In-Memory File System with Spark
Plus Ignite
When working with fi les instead of RDDs, it is
sti ll possible to share state between Spark jobs
and applicati ons using the Apache Ignite
In-Memory File System (IGFS). IGFS implements
the Hadoop FileSystem API and can be
deployed as a nati ve Hadoop fi le system, just
like HDFS. Ignite plugs in nati vely to any Hadoop
environment and any Spark environment.
An in-memory fi le system can be used with
zero code changes in plug-n-play fashion.

Conclusion
Ignite and Spark are both in-memory
computi ng soluti ons but they target diff erent
use cases and are complementary to each
other. In many cases, they are used together
to achieve superior results:

• Ignite can provide shared storage, so state
can be passed from one Spark applicati on
or job to another

• Ignite can provide SQL with indexing so
Spark SQL can be accelerated over 1,000x

• When working with fi les instead of RDDs,
the Apache Ignite In-Memory File System
(IGFS) can also share state between Spark
jobs and applicati ons

GridGain Systems has a library of webinars,
videos, white papers, and more which describe
Apache Ignite and provide guidance on
implementi ng it for specifi c use cases such as
using it as a complement to Apache Spark.

Home Companies White Papers Regions Infrastructure Sectors Jobs Industry Perspectives

 ORIgINally PublISHED ON insidebIgData WWW.INSIDEbIgData.COM

jobs can be noti fi ed and can

