
WHITE PAPER

Adding Speed and Scale
to MySQL
In-Memory Computing Options for MySQL Server Deployments

2

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

MySQL® is one of the most popular open source databases.

Even after the acquisition by Oracle of MySQL as part of

Sun, innovation has continued and the options for MySQL

customers have grown. Three major distributions and many

more options for improving speed and scale give companies

almost too many choices. But new business needs and per-

formance demands have pushed many applications and their

underlying RDBMSs beyond their architectural limits. In many

cases the issues cannot be remedied by just fixing MySQL.

Part of the challenge is scalability. The adoption of digital

business, IoT, and other new technologies over the last

decade has increased query and transaction loads 10-1000

times, and the amount of data collected by 50 times.

Another major challenge is speed. Customer-facing web and

mobile apps, and their underlying APIs, all require sub-second

roundtrip latencies. This low latency requirement is impos-

sible to support given all the network hops, software layers,

data queries, and joins that occur between the new customer

apps and underlying applications and databases. In addition,

the amount of data needed for different analytics and other

computing types—including machine and deep learning—has

become too big to move quickly enough over the network.

Another challenge lies in the development of the applica-

tions themselves. New business initiatives (such as changes

to improve the end-to-end customer experience) require the

delivery of new capabilities in days or weeks, rather than

months or years. But most existing applications are inflexible

to change. It takes months just to deliver minor changes.

Most applications also do not support many newer tech-

nologies such as streaming analytics or machine and deep

learning, which are required to help streamline, automate,

and improve real-time processes.

This white paper explains your options for adding speed,

scale, and agility to end-to-end IT infrastructure. It exam-

ines different MySQL and third party options including

MySQL InnoDB Cluster, MySQL NDB Cluster, Galera Cluster,

MariaDB, Percona Server for MySQL with XtraDB Cluster,

Clustrix, Vitess, as well as cloud options such as Amazon

RDS for MySQL and Amazon Aurora, caching options such

as memcached and Redis, and in-memory computing (IMC)

technology.

It also explains the third party options available that help

evolve your architecture for increased speed and scale, and

create flexible IT infrastructures that support digital business

and other new technology initiatives.

THE CHALLENGE WITH SPEED, SCALE,
AGILITY, AND AUTOMATION

The latest variations of MySQL and their extensions cannot

deliver the performance and scalability required by changes

in the demands placed on deployments, including:

•	 The adoption of new web, mobile, and other self-service
channels.

•	The addition of personalization and other automation.

•	 The use of new types of data.

These new demands require speed and scale not just at the

database, but at other system layers as well.

Over the last decade, these innovations have led to query

and transaction volumes growing 10 to 1000 times. They

have resulted in 50 times more data about customers, prod-

ucts, and interactions. They have also shrunk customers

expected end-to-end response times from days or hours

to seconds or less. The required roundtrip latency from a

mobile device calling an API that accesses applications over

the network—which in turn access MySQL variations over the

network—must always be less than one second.

The existing architecture cannot deliver with existing appli-

cations and databases. For one, vertical scalability is not a

long-term option: the 10-1000 times growth rates (which

show no signs of slowing down) are faster than Moore’s Law.

Even if more is spent on hardware at the outset, eventually no

single hardware server can keep up with the growth. Latency

is also a major issue. The combination of multiple network

hops and queries involving large data sets make achieving

the required speed and scalability practically impossible with

the current architecture. As one architect put it, “You can’t

violate the laws of physics.” The system needs lower end-to-

end network latency, not just database latency.

Even if databases alone could address the speed and scale

challenges, the applications themselves introduce a third

major challenge. Customers have come to expect rapid

change. The new innovators that are disrupting just about

every business model deliver new capabilities in weeks or

days. Today’s applications are not that flexible: it can take

months or years to develop and deploy changes.

Then there is the final challenge: automation. Streamlin-

ing a process, creating a one-click shopping experience, or

proactively fixing issues as they occur all require real-time

intelligence and automation. The architecture of existing

applications and databases separates online transactions

processing (OLTP) from online analytical processing (OLAP),

data warehousing, and business intelligence. OLTP systems

3

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

cannot take the additional analytics load and were not

designed for that task. OLTP applications usually only solve

one problem and only use a portion of a business’ data. To

create a single view of the business for analytics, companies

must Extract, Transform, and Load (ETL) data into a ware-

house, cleanse the data, enrich it, and make it consistent

across different data types—all to make reporting and ad hoc

analytics work. When these ETL pipelines and data ware-

houses were created, neither the freshness of the data nor

the speed of reporting was as important as the accuracy of

the result.

Now the analytics and the decisions must happen in real-

time (often during a transaction) to deliver the required

sub-second experience. That is impossible to do with existing

applications. The only way to run analytics quickly enough

is to perform the analytics on the transaction data in the

same location where the transaction takes place. Most appli-

cations, however, do not include analytics or technologies

such as machine or deep learning that help with decision

automation.

THE EVOLUTION TOWARDS IN-MEMORY
COMPUTING

Many innovators have been able to address all the speed,

scale, agility and automation challenges with what Gartner

coined a Hybrid Transactional/Analytical Processing (HTAP)

architecture. One of the most common foundations for HTAP

is in-memory computing. One of the most common in-mem-

ory computing platforms are Apache Ignite and GridGain (the

commercially supported version of Apache Ignite).

With Apache Ignite, companies could adopt in-memory

computing incrementally, one project at a time. Most com-

panies started by implementing Ignite as an in-memory data

grid (IMDG) in-between existing databases and applications

rather than buying additional database licenses or adding

new database hardware. This method offloaded reads from

the databases, giving the databases substantially more room

for growth on their existing hardware and lowering latency.

IMDG deployments also gave companies a way to evolve

using existing applications. They could be more agile by

unlocking the data inside their applications for use by other

projects. For each project, as more data was added into their

common in-memory computing infrastructure, the combined

data could be used to:

•	 Perform real-time analytics.

•	Add speed and scale for new APIs.

•	 Process new types of data with streaming analytics.

•	Help with automation using machine and deep learning.

These deployments also improved business agility. New

workloads are easy to accommodate by adding more nodes

as needed, and more copies of the data, without impacting

existing applications. Ignite is also cloud native, which makes

using it in a DevOps environment straightforward.

OPTIONS FOR ADDING SPEED AND SCALE
TO MYSQL

Adopting HTAP and in-memory computing is the right long-

term approach for adding speed, scale, agility, and digitally

transforming businesses into real-time enterprises. But there

are also other short- and long-term options for helping with

speed and scale.

MySQL has been around for over 20 years. It was founded in

1994, and first released in 1995. In 2003 MySQL AB acquired

Alzato Tech, an Ericsson-based software company that built

cluster technology to make MySQL telco-grade technology.

MySQL AB proceeded to integrate the NDB Cluster technol-

ogy into MySQL. Over the next few years, third party options

started to emerge for MySQL.

•	NDB Cluster: MySQL buys Alzato Tech in 2003.

•	 InnoDB: Oracle buys InnoDB, a storage engine for MySQL
in 2005.

•	Percona: released Percona Server for MySQL in 2006.

•	Galera Cluster released for MySQL in 2007.

•	MariaDB: A MySQL fork started the same day Oracle closed
the Sun (and hence MySQL) acquisition in 2010.

•	Clustrix: a drop-in replacement for MySQL founded in
2006, acquired by MariaDB in 2018.

Oracle’s acquisition of Sun (Sun acquired MySQL AB in 2008)

birthed a new fork of MySQL: MariaDB. This further frag-

mented the MySQL market.

Today, companies can choose between Oracle, Percona, and

MariaDB for MySQL deployments, and have a host of options

for adding speed and scale. Many options address the dif-

ferent challenges with scale, but not nearly enough ade-

quately address the challenges with speed. There are also

other open source and third-party options that address these

challenges outside of the database. This whitepaper provides

a comparison of all the options for improving scale, as well as

guidelines for how to improve both speed and scale together

by moving towards in-memory computing overtime.

4

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

First, we will compare the main MySQL options available for

adding speed and scale, along with recommendations for

when to choose each option. We did not evaluate for OLAP/

analytical scale, in part because there are no easy ways to just

add columnar support. MariaDB ColumnStore and InfiniDB

are two options. But benchmarks for these features tend to

show that while they provide MySQL compatibility, it comes

with slower performance. MemSQL is wire-compatible with

MySQL, which means if data is migrated into MemSQL using

the same table structure, then the MySQL clients can con-

nect to MemSQL. The challenge with MemSQL is that while

it has great OLAP performance, it is not as good for OLTP

workloads.

The main option to achieve true OLAP scale is to build a dual

stack. For example, in the cloud use Amazon RDS for Aurora

or MySQL, and then pipeline data into Redshift. But this is

all outside the scope of this paper. If you are interested, stay

tuned for an in-memory computing best practices whitepa-

per on real-time analytics.

LOWERING LATENCY: MEMORY TABLES,
MEMCACHED, AND REDIS

As with other open source databases (like PostgreSQL®),

there are only a few options for lowering the latency of a

MySQL deployment. One option for any databases is simply

to use a RAM disk, or something like Intel Optane DC Per-

sistent Memory along with an operating system that supports

Optane at the file system level for storage. We assume you

know this trick.

The first in-memory option is MySQL Memory Tables. The

MySQL memory storage engine can create tables in memory.

It is only recommended that this method is used as tempo-

rary tables in smaller deployments, since memory tables are

not backed up to disk, can’t be clustered, and don’t support

foreign keys. Even more importantly, they don’t support

transactions or guarantee MVCC. Even write scalability is

limited as they can only be locked at the table level. Note

also that the standard InnoDB storage engine does not sup-

port in-memory tables.

The second option is using memcached, which is a well-doc-

umented technology to use with MySQL. But it requires

work. Applications must be changed so that they populate

and check memcached for data, and also manage refreshing

memcached. It is important to note the limitations of mem-

cached:

•	While it offloads reads from MySQL and lowers read la-
tency, it does not easily scale data sets horizontally. You
can either have memcached locally with an application,
which means you are limited by the amount of available
RAM on the machine, or you can install several mem-
cached servers remotely and fetch data from the cache
over the network. This may not seem like a big issue, but
most corporate networks can only move one gigabyte per
second across all servers at most. Companies are increas-
ingly hitting that limit.

•	Memcached is still hard to scale horizontally. For large data
sets it is probably best to look for solutions elsewhere.

•	 There is no real security within memcached. Evaluate se-
curity requirements carefully before proceeding.

•	 Fault tolerance can be challenging, though it is manage-
able.

Another option is Redis. It is very similar to memcached,

both in capabilities and challenges. It is key-value only, and

a cache-aside cache that requires changes to the application

to use it. Redis does scale better, but in practice it is hard

to manage data partitioning (or sharding). When scaling with

Redis, you usually need to create a dedicated cluster on dif-

ferent machines, which means you have the same network

limitations as memcached. Security is also an issue with

open-source Redis. Only Redis Enterprise contains reason-

able security options.

In short, there is no perfect option within the MySQL com-

munity for lowering latency—especially at scale.

OPTIONS FOR SCALING MYSQL
VERTICALLY AND HORIZONTALLY

To improve scale, scaling vertically might seem like a good

option in the short term. MySQL does scale vertically (like

most other databases), but it is not as cost effective or (in

several cases) a viable long-term option. Data is growing

too fast for hardware in general, and the capacity of a single

machine or network to cope. Hardware costs also explode

once they exceed the capacity of current commodity hard-

ware.

Horizontal scalability is the only viable long-term option. Tra-

ditional horizontal scaling solutions such as replication can

help with read scalability, but they do not help with scaling

the size of the database or with write scalability. The best

answer for both is to create a distributed database by hor-

izontally replicating and partitioning the data, the SQL, and

other computing.

5

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

Read scalability through replication works well. Some solu-

tions provide multi-master write support as well. But the

consistent message from any research online or with experts

is the same: when it comes to scaling to supporting large

data sets, partitioning is generally considered as a last resort.

Core MySQL provides support for sharding data manually by

key ranges. This might be enough for some deployments.

But managing the partitions for adding write scalability and

failover is still largely a manual job. It is also hard to rebalance

data as nodes are added or dropped, or the data distribution

changes. Sharding gets more complicated with more tables.

In addition, different applications that use the data in differ-

ent ways often require different data partitioning strategies.

In general, the best option is either evaluating options for

MySQL clustering or options that allow you to add horizontal

scale beyond the database layer. Within the MySQL world,

the options are clustered around three vendors: Oracle, Per-

cona, and MariaDB.

It used to be that drop-in support for MySQL worked well.

But this has gotten harder to maintain in recent years with

recent underlying changes. First, while MariaDB and Percona

do their best to merge in MySQL changes, it still takes time.

Second, these companies each make their own improve-

ments. MariaDB in particular has been adding new features

almost from the beginning and is less compatible. Percona

adds their own implementation of MySQL Enterprise-equiva-

lent features and rolls in other changes as well, though they

still are drop-in compatible with MySQL today. Depending

on your needs, you may also decide to migrate to another

vendor to get the best combination of MySQL with the right

clustering option.

The following is a comparison of the main open source and

commercial options that can be considered for MySQL:

•	MySQL InnoDB Cluster

•	MySQL NDB Cluster

•	Galera Cluster

•	MariaDB (with Galera Cluster)

•	 Percona Server for MySQL with XtraDB Cluster

•	Clustrix

•	Vitess

•	Cloud versions of MySQL (e.g., Amazon RDS for MySQL,
Amazon Aurora)

There are several routers that sit in front of MySQL. In gen-

eral, there are de facto choices used with the various clus-

tering options. These are covered below with each Cluster

option:

•	MySQL Router: designed for use with InnoDB Cluster. De-
signed to support read-only, read/write and MySQL Fabric
configurations.

•	ProxySQL: Used with Percona XtraDB Cluster. Support for
MySQL Replication and Group Replication. Support for Gal-
era Cluster through scripting.

•	MaxScale: Used with MariaDB and Galera Cluster.

•	HAProxy: Widely used reverse proxy for applications but
does not support MySQL as well for basic routing such as
splitting reads and writes.

•	Keepalived: Another reverse proxy, which, like HAProxy, is
not specific to SQL.

•	Nginx (Plus): Great HTTP load balancer as an alternative to
appliances, but like HAProxy, not meant for SQL-specific
routing.

The three main SQL-specific routers are covered: MySQL

Router, ProxySQL and MaxScale.

There are also various cloud options to consider if you are

considering migrating to the cloud. Amazon offers RDS for

MySQL, for example, which makes it easier to manage fea-

tures like replication and failover. Azure and Google have

similar offerings. Amazon Aurora is compatible with MySQL

and has horizontal scalability for online transactional pro-

cessing (OLTP) applications. This comparison will summarize

those options as well.

Multi-Master Read/Write Replication:
MySQL InnoDB Cluster

Since buying InnoDB in 2005, and then MySQL in 2010,

Oracle has made some investments. One was to build the

InnoDB Cluster. Beyond open source MySQL, which is free,

Oracle sells:

•	MySQL Standard Edition ($2,000 per server): support and
maintenance for MySQL.

•	MySQL Enterprise Edition ($5,000): adds MySQL Router,
Partitions, monitoring and management, backup and re-
covery, security, thread pooling, Group Replication, and In-
noDB Cluster.

•	MySQL Cluster CGE ($10,000): Adds the NDB storage en-
gine, NDB Cluster, MySQL Cluster Manager, and Geo-Rep-
lication.

6

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

There are really three different replication and clustering

technologies, which are compared below:

•	NDB Cluster, which was acquired by MySQL in 2003.

•	Galera Cluster, which has three variants offered by Coder-
ship, the inventors of Galera, Percona and MariaDB.

•	MySQL InnoDB Cluster. By the end of 2016, Oracle had
introduced Group Replication, which they rewrote from the
ground up.

Using InnoDB Cluster requires purchasing Enterprise Edi-

tion at the very least. The standard configuration is MySQL

Router, with InnoDB Group Replication and the InnoDB

storage engine as part of MySQL. InnoDB Group Replica-

tion provides single (master-slave) replication by default, but

also supports multi-master replication. For each change, the

entire database is replicated synchronously or asynchronously

using MySQL Group Replication to each node. Each node can

accept both reads and writes. Any write conflicts detected

and handled based on timestamps, which can be thought of

as a form of optimistic transactions. Whichever transaction

fails after the conflict resolution may need a compensating

transaction. Group Replication does have some split brain

prevention as well. Management is not as good as some

of the other options. For example, there is no automatic

provisioning of nodes for group replication. Node failures

need to be managed explicitly. In addition, flow control (or

throttling) is done separately by each node. This means each

node holds statistics on others, versus in a centrally con-

trolled cluster where statistics and flow control are managed

in a single place for all nodes (which is typically a better

solution). There is also no WAN support for multiple data

centers. For WAN-based deployments, evaluate the Cluster

CGE edition.

Note that MySQL InnoDB Cluster is a shared-something

architecture, like Oracle Database RAC, in that the cluster

coordinates locks across the nodes, as well as detects and

resolves any contentions. The challenge is, as with Oracle

RAC, that the amount of resources needed for this coordi-

nation increases exponentially with the number of nodes.

This growth in resource consumption puts a clear limit on

horizontal read and write scalability.

Regarding partitioning, InnoDB Group Replication is limited.

With InnoDB, there are several limitations with partitions. For

example, foreign keys, stored procedures, UDFs, or plugins

are not all supported when using partitions, There are also

limitations in what functions are supported in each of these

features. You can still partition and rebalance manually, as

well as restart and rejoin nodes as issues occur. But it is

mostly manual.

Without partitioning, the InnoDB storage limit is 64TB, which

is not that large given current data growth rates. If you need

to grow your database and use partitioning, you should eval-

uate some of the other options.

Multi-Master Read/Write Scalability and
Partitioning: NDB Cluster

Oracle offers two options for MySQL. One uses InnoDB as

the de facto storage engine. The other uses the NDB storage

engine and NDB Cluster. NDB was originally part of Alzato,

an Ericsson-based venture startup focused on delivering tel-

co-grade MySQL that MySQL acquired in 2003 for its clus-

tering technology. Oracle has continued to sell it for specific

scale-out use cases.

NDB is designed to deliver real-time performance at scale

of up to 128TB for each NDB engine. Unlike InnoDB, NDB

does support in-memory tables with some data optionally on

disk, along with data durability for both. It provides horizon-

tal scale using replication along with automatic partitioning

that is transparent to applications. Changes are propagated

using synchronous replication within a cluster, and MySQL

Replication for asynchronous replication between clusters.

It is designed to provide five nines (99.999%) availability.

Node recovery and failover is automatic and typically recov-

ers within one second.

But there are some limitations, even if you are not concerned

about the two times cost increase compared to Enterprise

Edition. The biggest limitation is that it does not provide

multi-version concurrency control (MVCC) for concurrent

transactional access. NDB only supports read committed, not

repeatable read or serializable. If you need or expect higher

levels of transactional support—which is often the case—you

will need to look elsewhere.

Horizontal Read and Write Scalability:
Galera Cluster

In 2007, Codership released Galera Cluster, a synchronous

multi-master database cluster that supports synchronous

replication for MySQL. Today it is used both for MySQL

and MariaDB, and uses InnoDB as the storage engine. In

multi-master replication, every node in the cluster has the

entire data set and can handle reads and writes.

Galera Cluster has several strengths over MySQL Group Rep-

lication, including stronger split brain prevention, coordinated

flow control, and stronger WAN support. It also has a few

challenges. For one, while its synchronous replication is

designed to be synchronous without using two phase commit

(2PC) and is a very elegant solution, transactions can fail

7

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

if the replication fails. Like InnoDB Cluster, it also provides

multi-master read/write support with a shared-something

architecture that limits its horizontal scalability. The only way

to get linear horizontal scalability is partitioning. Galera Clus-

ter has similar limitations to InnoDB Cluster, such as issues

with foreign keys. However, you can manually partition and

have nodes recover and rejoin the cluster automatically. If

this works, it is one reason to choose Galera (or Percona

XtraDB Cluster) over MySQL Group Replication.

If you need greater scalability, you need to consider some of

the options below that don’t use InnoDB Cluster or Galera

Cluster.

MariaDB

MariaDB started as a fork of MySQL the day Oracle’s acqui-

sition of Sun closed in 2010. With part of the original MySQL

development team, MariaDB focused on adding new features.

Today, while a lot of the core technology continues to be the

same as MySQL and use both InnoDB and Galera Cluster,

MariaDB has been diverging from MySQL in some areas. This

means there are workloads where MariaDB will perform bet-

ter than MySQL or Percona. But you may encounter some

incompatibilities as a result.

MariaDB offers an integration architecture of:

•	MariaDB for OLTP.

•	MariaDB ColumnStore for OLAP.

•	MariaDB MaxScale, both for routing and for Change Data
Capture (CDC) from the MariaDB OLTP to MariaDB OLAP
instances.

Then add Galera Cluster on top of this.

Just like MySQL and Percona Server for MySQL, if you are

looking to MariaDB to scale MySQL, you are choosing the

whole stack. This is not a major issue when compared to

MySQL and InnoDB Cluster. For example, MariaDB recently

decided to only support InnoDB and drop XtraDB support.

While XtraDB has historically been a step ahead as a stor-

age engine in comparison to InnoDB, this difference has

become mostly about performance and scalability. MariaDB

also includes its own version of Galera Cluster for its read/

write scalability. In general, having the vendor perform the

integration of the different components is a good thing.

One key difference is better OLAP performance with Col-

umnStore. MariaDB is the only one of the three distributions

that offers integrated columnar support, a feature that has

already appeared in several commercial databases including

Oracle Database. ColumnStore is a great option to consider

OLAP-related query needs, and could be enough. However,

in some benchmarks it has not performed as well as dedi-

cated columnar-centric disk-based or in-memory columnar

databases. Make sure to perform benchmarks around your

use cases before you make a decision.

MariaDB has some of the same limitations as the MySQL

stack. But if some of the additional features of MariaDB

help, including columnar support, and manually partitioning

to achieve scale is not a problem, then MariaDB may be a

great choice. Galera Cluster can at least manage partitioned

nodes, even if it cannot partition or rebalance.

If a use case requires automated partitioning that is transpar-

ent to the application the options below might be a better fit.

Distributed Read Scalability: Percona
Server for MySQL and XtraDB Cluster

You can think of Percona Server for MySQL as a free ver-

sion of MySQL Enterprise Edition. It is a drop-in replacement

for MySQL Community or Enterprise that does not require

application changes or schema redesign. Percona focuses on

adding speed and scale to MySQL through patches and extra

features. While several MySQL enterprise features are only

available in Oracle’s Enterprise version, they are offered as

part of the free and open source Percona Server for MySQL.

Examples include I/O optimization, thread pools, authenti-

cation and logging plug-in support, improvements in table

locking for backups, and visibility for monitoring and trouble-

shooting. Percona also merges improvements from MariaDB

or other vendors. There are a lot of improvements that are

easy to find on the Percona web site in the Percona Feature

Comparison.

Percona XtraDB Cluster is a full solution with XtraDB and

ProxySQL. Generally available since 2012, it is considered a

stable solution. XtraDB is basically an enhanced version of

InnoDB. XtraDB Cluster is based on Galera, starting when

Galera became open source.

In short, just as with MariaDB, people choose Percona for its

unique features, especially its performance and scalability

features, over MySQL and MariaDB. But it still has the same

eventual scalability limitations as MariaDB. It can manage

partitioned nodes well, but does not do the partitioning or

rebalancing. XtraDB Cluster also only really supports optimis-

tic transactions. It does not support XA transactions across

the cluster.

Distributed MySQL: Vitess

Vitess was originally started in 2010 within YouTube to solve

its MySQL scalability issues, especially around sharding. It

was as one of the early technologies to adopt Kubernetes.

8

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

Since then, it been adopted at Slack, Square, HubSpot, and

a host of other software/SaaS vendors. PlanetScale, founded

in 2018, uses Vitess as the foundation for its commercially

supported version on-premise and in the cloud. In 2018,

Vitess also became a hosted project at the Cloud Native

Computing Foundation (CNCF).

Vitess has many strengths. It is well suited for Kuberne-

tes-based architectures, including microservices. It supports

sharded materialized views, which is the ability to shard

using multiple sharding keys. Vitess also provides transparent

sharding, where the application does not need to know that

sharding is happening. It is based on a single master for

each shard that then replicates out to other nodes. Unlike

multi-master coordination on transactions, this helps ensure

horizontal linear scale.

But in the grand scheme of MySQL, Vitess is relatively young

technology. As a new technology, watch out for any issues

such as:

•	Vitess supports distributed transactions all the way up to
a two-phase-commit (2PC) that will roll back. But it does
NOT support isolation, so intermediate results can show up
in queries, or “dirty reads.” Also, if you have written SQL
with “side effects” caused by stored procedures, foreign
keys, or triggers, you can end up with inconsistent data.

•	Early adopters like Slack say Vitess needed work to fit their
needs, which were different from YouTube’s needs. Make
sure to fully test out any solution before implementing it.

•	Make sure to investigate the list of unsupported queries,
which is available in the FAQ section of the Vitess User
Guides.

•	Vitess does not provide out-of-the-box master manage-
ment for identifying or changing a master. Orchestrator is
the recommended add-on option.

•	Vitess does not provide out-of-the-box monitoring, and
does not appear to be supported by common tools for
MySQL monitoring such as SeveralNines. It can be a chal-
lenge to determine how to monitor Vitess and MySQL to-
gether.

Distributed MySQL: Clustrix

Clustrix is a true, shared-nothing distributed version of

MySQL. It does not share any code with MySQL, but is a

drop-in replacement for MySQL. To be fair to Clustrix, it

is hard to say anything bad about it, other than it is only

commercially available and not open source. It is truly dis-

tributed with automatic sharding. It enforces MVCC with read

committed and repeatable read. While it also uses serial-

izable internally to do data movements across the cluster,

serializable is not available to developers. In addition, Clustrix

uses two-phase commit pessimistic locking, not optimistic.

Clustrix was acquired by MariaDB in 2018, which means it is

in good hands as a MySQL database. This is a great option

for horizontal, linear scalability for MySQL. The other may

be NDB. You can also evaluate other distributed disk-based

databases like Google Spanner, or in-memory databases like

Oracle TimesTen, GridGain/Apache Ignite, and CockroachDB.

Distributed MySQL: MySQL as a Service

Most companies do not evaluate MySQL as a service to see

whether they can get increased performance and scalabil-

ity. The main reason to compare MySQL as a service to

on-premise versions is to see whether it is possible to move

applications to the cloud and avoid maintaining related data-

base infrastructure as an internal resource.

If you have already made the decision to migrate your appli-

cations that rely on MySQL to the cloud, there are several

great options available to you. Often companies choose a

strategic cloud vendor first, and then evaluate their database

options. The good news is AWS, Azure, and Google Cloud

Platform all have reasonably good implementations of MySQL

that have many of the scalability features such as read rep-

lication for scale, and simplify management. AWS provides

two options; Amazon RDS for MySQL and Aurora (which is

MySQL and PostgreSQL compatible). Aurora generally gives

you better performance, though there are some exceptions

such as high write workloads with secondary indexing. But

Aurora also costs you a little more (as much as 20% more,

by some estimates).

But none of these cloud services improve performance or

scalability. These managed services for the most part imple-

ment best practices with the latest hardware. MySQL still

faces the 64TB limit per database instance. While they all

use replication for read scale, none of the services use shard-

ing to increase write scale.

ADDING SPEED AND SCALE WITH IN-
MEMORY COMPUTING

The other main option for adding speed and scale is to use

in-memory computing. The end goal of in-memory com-

puting is to move data into memory for speed, and to use

a combination of a shared nothing architecture and MPP

for linear, horizontal scale for all data-intensive workloads.

9

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

horizontally on commoditized hardware to handle increased

read loads without putting additional loads on the database.

This is much less expensive than buying specialized database

hardware.

The easiest way to slide an IMDG in-between an application

and MySQL is for the IMDG to support SQL. If it does not

support SQL, then you must write new code that replaces

the SQL with a key-value API, and more code for the IMDG

to access MySQL. Be sure to look for MySQL support.

Most IMDGs also provide some form of massively parallel

processing (MPP) where they divide up data into smaller sets

across nodes and collocate code with the data (like Hadoop).

MPP allows horizontal scalability of both the data and com-

puting, like the way MapReduce or Spark work. If the data is

partitioned so that the computing has all the data it needs on

each node, then the data does not need to be fetched over

the network. This approach helps eliminate one of the most

common performance bottlenecks in big data analytics and

general big data computing, the network.

A MySQL database does not support MPP. If moving data

over the network is part of the performance issue, scaling

MySQL will not solve the problem. Also, part of the reason

for adding an IMDG is to unlock data that is in MySQL, to be

able to use the data in new projects, including HTAP, without

overloading MySQL or requiring a hardware upgrade. MySQL,

and a database in general, does not support real-time ana-

HTAP needs both existing data in relational databases and

new data, such as streaming data from Web interactions

or devices, or social data that helps it understand customer

preferences and relationships.

The most common first step is the use of in-memory com-

puting as an IMDG to existing applications, for two reasons.

First, an IMDG adds in-memory speed and horizontal scal-

ability that is more cost-effective in the longer term than

scaling up with expensive hardware.

Do the math. Add up all the expected read and write scal-

ability needs for the next 3-5 years. Then figure out your

long term options. Most companies discover the following:

they can either spend the money now on expensive hard-

ware like Exadata, and then must implement an IMDG in the

future or add the IMDG now and slowly grow it to the same

size in the future assuming no other uses.

Second, an IMDG unlocks existing data for new uses, such as

for real-time analytics, HTAP, streaming analytics or machine

and deep learning. To support all these projects requires

other capabilities, namely:

•	 IMDB support for storing and managing new types of data
alongside existing data.

•	 Streaming analytics support, including integration with
other streaming technologies like Apache Kafka and Spark.

•	Machine and deep learning support.

Again, do the math. Identify the projects that can be achieved

with existing data accessible in memory and add up the ROI

over those 3-5 years. That is money lost without an IMDG as

part of a broader in-memory computing platform. The ROI

on those additional projects should be added to help decide

between different in-memory computing technologies and

other options.

HOW AN IMDG ADDS SPEED AND SCALE,
AND UNLOCKS DATA

An IMDG adds speed and scale by sitting in-between appli-

cations and databases, in the path of all reads and writes. It

stores all data in-memory and keeps the data up to date by

supporting a read-through/write-through cache pattern. It

receives all writes, writes to memory, and then passes it on

to the database as a transaction. If the database transaction

succeeds, the IMDG commits to memory as well. Since this

keeps all data in the IMDG in sync with the database, the

IMDG can handle all reads directly. This lowers latency for

reads because the data is accessed directly from RAM, not a

disk-based database. An IMDG also adds scale by offloading

all read workloads from the database. Most IMDGs can scale

10

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

for transactions and analytics enables real-time visibility

and action for their business. With each project, they have

unlocked more information for use by other applications on

a platform with real-time performance at peak loads and

always-on availability. As a result, they have been able to

develop new projects faster, be more flexible to change, and

more responsive in ways that have improved their experi-

ences and business outcomes.

ADDING SPEED AND SCALABILITY TO
EXISTING APPLICATIONS WITH AN IMDG

One of the core GridGain capabilities and most common use

cases is as an IMDG. GridGain can increase the performance

and scalability of existing applications and databases by

sliding in-between the application and data layer with no

rip-and-replace of the database or application and without

major architectural changes.

lytics or high performance computing at scale. It doesn’t

support Spark or other streaming analytics technologies. It

does not support general-purpose machine or deep learning.

All of these rely on MPP.

APACHE IGNITE AND THE GRIDGAIN IN-
MEMORY COMPUTING PLATFORM

GridGain is the leading in-memory computing platform for

real-time business. It is the only enterprise-grade, commer-

cially supported version of the Apache® Ignite™ (Ignite) open

source project. GridGain includes enterprise-grade security,

deployment, management, and monitoring capabilities which

are not in Ignite, plus global support and services for busi-

ness-critical systems. GridGain Systems contributed the code

that became Ignite to the Apache Software Foundation and

continues to be the project’s lead contributor.

GridGain and Ignite are used by tens of thousands of com-

panies worldwide to add in-memory speed and unlimited

horizontal scalability to existing applications, and then add

HTAP to support new initiatives to improve the customer

experience and business outcomes. With GridGain, compa-

nies have:

•	 Improved speed and scalability by sliding GridGain in-be-
tween existing applications and databases as an IMDG with
no rip-and-replace of the applications or databases.

•	 Improved transactional throughput and data ingestion by
leveraging GridGain as a distributed IMDB.

•	 Improved the customer experience or business outcomes
by adding HTAP that leverages real-time analytics, stream-
ing analytics and continuous learning.

GridGain customers have been able to create a new shared

in-memory data foundation. This single system of record

Figure 1. Apache Ignite and the GridGain In-Memory Computing Platform

Figure 2. GridGain as an In-Memory Data Grid (IMDG)

11

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

This is because GridGain supports ANSI-99 SQL and ACID

transactions. GridGain can sit on top of leading RDBMSs

including IBM DB2®, Microsoft SQL Server®, MySQL, Ora-

cle® and PostgreSQL as well as NoSQL databases such as

Apache Cassandra™ and MongoDB®. GridGain generates the

application domain model based on the schema definition

of the underlying database, loads the data, and then acts as

the new data platform for the application. GridGain handles

all reads and coordinates transactions with the underlying

database in a way that ensures data consistency in the data-

base and GridGain. By utilizing RAM in place of a disk-based

database, GridGain lowers latency by orders of magnitude

compared to traditional disk-based databases.

STORING DATA FOR HIGH VOLUME, LOW
LATENCY TRANSACTIONS AND DATA
INGESTION WITH AN IMDB

A GridGain cluster can also be used as a distributed, transac-

tional IMDB to support high volume, low latency transactions

and data ingestion, or for low cost storage.

The GridGain IMDB combines distributed, horizontally scal-

able ANSI-99 SQL and ACID transactions with the GridGain

Persistent Store. It supports all SQL, DDL and DML com-

mands including SELECT, UPDATE, INSERT, MERGE and

DELETE queries and CREATE and DROP table. GridGain par-

allelizes commands whenever possible, such as distributed

SQL joins. It allows for cross-cache joins across the entire

cluster, which includes joins between data persisted in third

party databases and the GridGain Persistent Store. It also

allows companies to put 0-100% of data in RAM for the best

combination of performance and cost.

The in-memory distributed SQL capabilities allow develop-

ers, administrators and analysts to interact with the GridGain

platform using standard SQL commands through JDBC or

ODBC or natively developed APIs across other languages as

well.

ADDING REAL-TIME ANALYTICS AND
HTAP WITH MASSIVELY PARALLEL
PROCESSING (MPP)

Once GridGain is put in place, all the data stored in exist-

ing databases or in GridGain is now available in memory for

any other use. Additional workloads are easily supported by

GridGain with unlimited linear horizontal scalability for real-

time analytics and HTAP.

GridGain accomplishes this by implementing a general pur-

pose in-memory compute grid for massively parallel pro-

cessing (MPP). GridGain optimizes overall performance by

distributing data across a cluster of nodes and acting as a

compute grid that sends the processing to the data. This

collocates data and processing across the cluster. Collocation

enables parallel, in-memory processing of CPU-intensive or

other resource-intensive tasks without having to fetch data

over the network.

The GridGain Compute Grid is a general purpose framework

that developers can use to add their own computations for

any combination of transactions, analytics, stream process-

ing, or machine learning. Companies have used GridGain’s

MPP capabilities for traditional High-Performance Computing

(HPC) applications as well as a host of real-time HTAP appli-

cations.

GridGain has implemented all its built-in computing on the

GridGain Compute Grid, including GridGain distributed SQL

as well as the GridGain Continuous Learning Framework

Figure 3. GridGain as an IMDB

Figure 4. GridGain Compute Grid – Client Server vs Collo-
cated Processing (MPP)

12

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

for machine and deep learning. Developers can write their

own real-time analytics or processing in multiple languages,

including Java, .NET and C++, and then deploy their code

using the Compute Grid.

Collocation is driven by user-defined data affinity, such as

declaring foreign keys in SQL DDL (data definition language)

when defining schema. Collocation helps ensure all data

needed for processing data on each node is stored locally

either as the data master or copy. This helps eliminate the

network as a bottleneck by removing the need to move large

data sets over the network to applications or analytics.

ADDING DEEPER INSIGHTS AND
AUTOMATION WITH STREAMING
ANALYTICS AND CONTINUOUS LEARNING

The capabilities GridGain supports are not just limited to

real-time analytics that support transactions. GridGain is also

used by the largest companies in the world to improve the

customer experiences or business outcomes using streaming

analytics and machine and deep learning. These companies

have been able to incrementally adopt these technologies

using GridGain to ingest, process, store and publish stream-

ing data for large-scale, mission critical business applications.

GridGain is used by several of the largest banks in the world

for trade processing, settlement and compliance. Telecom-

munications companies use it to deliver call services over

telephone networks and the Internet. Retail and e-commerce

vendors rely on it to deliver an improved real-time experi-

ence. And leading cloud infrastructure and SaaS vendors use

it as the in-memory computing foundation of their offerings.

Companies have been able to ingest and process streams

with millions of events per second on a moderately-sized

cluster.

GridGain is integrated and used with major streaming tech-

nologies including Apache Camel™, Kafka™, Spark™ and

Storm™, Java Message Service (JMS) and MQTT to ingest,

process and publish streaming data. Once loaded into the

cluster, companies can leverage GridGain’s built-in MPP-style

libraries for concurrent data processing, including concur-

rent SQL queries and continuous learning. Clients can then

subscribe to continuous queries which execute and identify

important events as streams are processed.

GridGain also provides the broadest in-memory computing

integration with Apache Spark. The integration includes

native support for Spark DataFrames, a GridGain RDD API

for reading in and writing data to GridGain as mutable Spark

RDDs, optimized SQL, and an in-memory implementation of

HDFS with the GridGain File System (GGFS). The integration

allows Spark to:

•	Access all the in-memory data in GridGain, not just data
streams.

•	 Share data and state across all Spark jobs.

•	Take advantage of all GridGain’s in-memory processing
including continuous learning to train models in near re-
al-time to improve outcomes for in-process HTAP appli-
cations.

GridGain also provides the GridGain Continuous Learning

Framework. It enables companies to automate decisions by

adding machine and deep learning with real-time perfor-

mance on petabytes of data. GridGain accomplishes this by

Figure 5. GridGain for Stream Ingestion, Processing and
Analytics

Figure 6. GridGain for Machine and Deep Learning

13

WHITE PAPERAdding Speed and Scale to MySQL

© 2019 GridGain Systems, Inc.

running machine and deep learning in RAM and in place on

each machine without having to move data over the net-

work.

GridGain provides several standard machine learning algo-

rithms optimized for MPP-style processing including linear

and multi-linear regression, k-means clustering, decision

trees, k-NN classification and regression. It also includes a

multilayer perceptron and TensorFlow integration for deep

learning. Developers can develop and deploy their own algo-

rithms across any cluster as well as using the compute grid.

The result is continuous learning that can be incrementally

retrained at any time against the latest data to improve every

decision and outcome.

SUMMARY

Applications and their underlying RDBMSs have been pushed

beyond their architectural limits by new business needs and

new software layers. Companies must add speed, scale, agil-

ity, and new capabilities to support digital transformation

and other business critical initiatives. There are many options

for adding speed and scale to MySQL–and each has its place.

But when the speed and scale needs extend beyond what

can be addressed at the database layer, the best long term

approach is in-memory computing. Not only does it add

speed and scale, but it unlocks data, enabling companies to

be much more agile.

Wellington’s solution was to deploy its investment book

of record (IBOR) on the GridGain in-memory computing

platform. The Wellington IBOR serves as the single source

of truth for investor positions, exposure, valuations, and

performance. All trading transactions and account and

back office activity flow through the IBOR in real time.

•	 Horizontal Speed and Scalability: Wellington’s IBOR has

unlimited horizontal scalability. It uses GridGain’s SQL

support to add speed and scalability by sliding in-between

Oracle, its system of record, and the applications. The

result is at least 10 times faster performance by adding

in-memory computing on top of its Oracle database

deployment.

•	 Use of HTAP: The IBOR is an HTAP system that is used

by portfolio management teams for real-time position,

market value, exposure, and performance analytics; by

risk management teams for risk analytics and overall risk

management; and by compliance teams to ensure, in

real-time, that all regulatory requirements are met.

Why Wellington chose GridGain

•	 In-memory computing

•	 Horizontally scalable

•	 Supports distributed SQL

•	 ACID compliant (consistent data)

•	 Collocates data and computing

•	 Combines operational and analytical workflows (HTAP)

Adding Speed, Scalability and Ana-
lytics at Wellington Management
Wellington Management is one of the top 20 global asset

management firms in the world, with more than $1 trillion

in client assets under management.

Wellington had three major challenges:

1.	Its current systems were no longer scalable due to an

exploding growth of financial data. It needed horizontal

scalability to handle the long-term growth.

2.	The 2008 financial crisis resulted in a wave of new

financial regulations that resulted in more complexity

and risk in existing systems.

3.	Many more new and complex asset classes have been

introduced in the last few years based on customer

demand, and there is a big need to release new asset

classes faster.

GridGain In-Memory Computing Platform

In-Memory
Database

In-Memory
Data Grid

Continuous
Learning Framework

Streaming
Analytics

Investment
Book of Record

(IBOR)

Trading
Systems

Accounting
Systems

Other
Back Office

Portfolio
Management

Risk
Management

Regulatory &
Compliance

© 2019 GridGain Systems. All rights reserved. This document is provided “as is”. Information and views expressed in this document, including URL and other web site references,
may change without notice. This document does not provide you with any legal rights to any intellectual property in any GridGain product. You may copy and use this document for
your internal reference purposes. GridGain is a trademark or registered trademark of GridGain Systems, Inc. Windows, .NET and C# are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Java, JMS and other Java-related products and specifications are either registered trademarks or trademarks
of Oracle Corporation and its affiliates in the United States and/or other countries. Apache, Apache Ignite, Ignite, the Apache Ignite logo, Apache Spark, Spark, Apache Hadoop,
Hadoop, Apache Camel, Apache Cassandra, Cassandra, Apache Flink, Apache Flume, Apache Kafka, Kafka, Apache Rocket MQ, Apache Storm are either registered trademarks
or trademarks of the Apache Software Foundation in the United States and/or other countries. All other trademarks and trade names are the property of their respective owners
and used here for identification purposes only.

Adding Speed and Scale to MySQL WHITE PAPER

14 July 17, 2019

About GridGain Systems
GridGain Systems is revolutionizing real-time data access and processing with the GridGain in-memory computing platform built

on Apache® Ignite™. GridGain and Apache Ignite are used by tens of thousands of global enterprises in financial services, fintech,

software, e-commerce, retail, online business services, healthcare, telecom and other major sectors, with a client list that includes

ING, Raymond James, American Express, Societe Generale, Finastra, IHS Markit, ServiceNow, Marketo, RingCentral, American

Airlines, Agilent, and UnitedHealthcare. GridGain delivers unprecedented speed and massive scalability to both legacy and greenfield

applications. Deployed on a distributed cluster of commodity servers, GridGain software can reside between the application and data

layers (RDBMS, NoSQL and Apache® Hadoop®), requiring no rip-and-replace of the existing databases, or it can be deployed as an

in-memory transactional SQL database. GridGain is the most comprehensive in-memory computing platform for high-volume ACID

transactions, real-time analytics, web-scale applications, continuous learning and hybrid transactional/analytical processing (HTAP).

For more information on GridGain products and services, visit www.gridgain.com.

Contact GridGain Systems
To learn more about how GridGain can help your business, please email our sales team at sales@gridgain.com,

call us at +1 (650) 241-2281 (US) or +44 (0)208 610 0666 (Europe), or complete our contact form at www.gridgain.com/

contact and we will contact you.

http://www.gridgain.com
mailto:sales@gridgain.com
https://www.gridgain.com/contact
https://www.gridgain.com/contact

