
WHITE PAPER

Adding Speed and 
Horizontal Scale to PostgreSQL
In-Memory Computing Options for PostgreSQL Server Deployments



2

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

PostgreSQL is one of the most popular open source databases, 

and one of the most fragmented. There are over thirty dif-

ferent distributions and products built on PostgreSQL. These 

products give companies many options: almost too many to 

choose from when growing their PostgreSQL deployments. 

These options also have their limitations. New business 

needs and performance demands have pushed many appli-

cations and their underlying RDBMSs beyond their architec-

tural limits. In many cases the issues cannot be remedied by 

just fixing the database layer.

Part of the challenge is scalability. Over the last decade, the 

adoption of digital business, IoT and other new technologies 

has increased query and transaction loads 10-1000x, and 

the amount of data collected by 50x. 

Another major challenge is speed. Customer-facing web and 

mobile apps, and their underlying APIs, all require sub-second 

roundtrip latencies. This low latency requirement is impos-

sible to support given all the network hops, software layers, 

data queries and joins that occur between the new customer 

apps and underlying applications and databases. In addition, 

the amount of data needed for different analytics and other 

computing types--including machine and deep learning--has 

become too big to move quickly enough over the network.

Another challenge lies in the development of the applica-

tions themselves. New business initiatives (such as changes 

to improve the end-to-end customer experience) require the 

delivery of new capabilities in days or weeks rather than 

months or years. But most existing applications are inflexible 

to change. It takes months just to deliver minor changes. 

Most applications also do not support many newer tech-

nologies such as streaming analytics or machine and deep 

learning, which are required to help streamline, automate, 

and improve real-time processes.

This white paper explains what your options are for adding 

speed, scale, and agility to end-to-end IT infrastructure—

both from PostgreSQL-centric vendors and from other open 

source and third-party products. It also explains how to 

evolve your architecture over time to both increase speed 

and scale and help create flexible IT infrastructure that sup-

ports digital business and other new technology initiatives.

THE CHALLENGE WITH SPEED, SCALE, 
AGILITY, AND AUTOMATION

The latest variations of PostgreSQL and their extensions 

cannot deliver the performance and scalability required by 

changes in the demands placed on deployments, including:

•	 The adoption of new web, mobile, and other self-service 
channels

•	 The addition of personalization and other automation

•	 The use of new types of data 

These new demands require speed and scale not just at the 

database, but at other system layers as well.

Over the last decade, these innovations have led to query 

and transaction volumes growing 10x to 1000x. They have 

resulted in 50x more data about customers, products, and 

interactions. They have also shrunk customers expected end-

to-end response times from days or hours to seconds or less. 

The required roundtrip latency from a mobile device calling 

an API that accesses applications over the network—which 

in turn access PostgreSQL variations over the network—must 

always be less than one second. 

The existing architecture cannot deliver with existing appli-

cations and databases. For one, vertical scalability is not a 

long-term option: the 10-1000x growth rates that show no 

signs of slowing down are faster than Moore’s Law. Even if 

at the outset more is spent on hardware, eventually no single 

hardware server will be able to keep up with the growth. 

Latency is also a major issue. The combination of multiple 

network hops and queries that involve large data sets makes 

achieving the required speed and scalability with the current 

architecture practically impossible. As one architect put it, 

“You can’t violate the laws of physics.” The system needs 

lower end-to-end network latency, not just database latency.

Even if databases alone could address the speed and scale 

challenges, the applications themselves introduce a third 

major challenge. Customers have come to expect rapid 

change. The new innovators that are disrupting just about 

every business model deliver new capabilities in weeks or 

days. Today’s applications are not that flexible: it can take 

months or years to develop and deploy changes.

Then there is the final challenge: automation. Streamlining a 

process, creating a one-click shopping experience, or watch-

ing for issues and proactively fixing them all require real-time 

intelligence and automation. The architecture of existing 

applications and databases separates online transactions 

processing (OLTP) from online analytical processing (OLAP), 

data warehousing, and business intelligence. OLTP systems 

cannot take the additional load and were not designed for 

analytics. OLTP applications usually only solved one problem 

and only used a portion of the data about the business. To 

create a single view of the business for analytics, companies 

must Extract, Transform and Load (ETL) data into a ware-

house, cleanse the data, enrich it, and make it consistent 



3

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

across different types of data—all to make reporting and ad 

hoc analytics work. When these systems were created, nei-

ther the freshness of the data nor the speed of reporting was 

as important as the accuracy of the result.

Now the analytics and the decisions must happen in real-

time (often during a transaction) to deliver a great sub-sec-

ond experience. That is impossible to do with existing 

applications. The only way to run analytics that quickly is 

to perform them on the same data in the same place as 

the transactions. Most applications, however, do not include 

analytics or technologies such as machine or deep learning 

that help with decision automation.

THE EVOLUTION TOWARDS IN-MEMORY 
COMPUTING

Many innovators have been able to address all the speed, 

scale, agility and automation challenges with an architec-

ture that Gartner coined Hybrid Transactional/Analytical Pro-

cessing (HTAP). One of the most common foundations for 

HTAP is in-memory computing. One of the most common 

in-memory computing platforms is Apache Ignite, along with 

its commercial supported version, GridGain. 

With Apache Ignite, these companies were able to adopt 

in-memory computing incrementally, one project at a 

time. Most companies started by implementing Ignite as an 

in-memory data grid (IMDG) in-between existing databases 

and applications rather than buying additional database 

licenses or adding new database hardware. This method off-

loaded reads from the databases, giving the databases sub-

stantially more room for growth on their existing hardware 

and lowering latency. Of of the most common such data-

bases is PostgreSQL. According to the annual in-memory 

computing survey, nearly 40% of participants use or expect 

to use Apache Ignite or GridGain with PostgreSQL.

These IMDG deployments also gave them a way to evolve 

around existing applications. They could be more agile by 

unlocking the data inside their applications for use by another 

project. For each project, as more data was added into their 

common in-memory computing infrastructure, the combined 

data could be used to:

•	 Perform real-time analytics 

•	Add speed and scale for new APIs 

•	 Process new types of data with streaming analytics

•	Help with automation using machine and deep learning

These deployments also improved business agility, as new 

workloads were easy to add without impacting existing appli-

cations by adding more nodes as needed. Ignite is also cloud 

native, which makes it straightforward to use in a DevOps 

environment.

OPTIONS FOR ADDING SPEED AND SCALE 
TO POSTGRESQL

Adopting HTAP and in-memory computing is the right long-

term approach for adding speed, scale, agility, and digitally 

transforming into a real-time business. But there are also 

other short- and long-term options for helping with speed 

and scale.

PostgreSQL has been around for over 30 years. It started in 

1986 as the POSTGRES project. A SQL interpreter was added 

in 1994 after several iterations and uses, and it became a 

Berkeley open-source project in 1995. When it became clear 

that Postgres95 did not have staying power as a name, it 

became PostgreSQL 1.0 in 1996. The releases continued 

with 6.0 in 1997, 7.0 in 2000, 8.0 in 2005, 9.0 in 2015, 10 

in 2017, and 11 the end of 2018. 

While there are other open source databases, PostgreSQL is 

one of the most popular. When Oracle acquired Sun (which 

had acquired MySQL AB in 2008), a fork of MySQL was 

made and MariaDB was born. This fragmented the MySQL 

market. While some MySQL customers moved to MariaDB, 

other MySQL customers who preferred “pure” open source 

migrated to PostgreSQL.

Today, companies that rely on PostgreSQL have almost too 

many options from the PostgreSQL community. There are 

many options that address different challenges with scale; 

and not nearly enough that adequately address challenges 

with speed. There are also other open source and third-

party options that can address these challenges outside of 

the database. This white paper provides a comparison of 

all the options for improving scale, as well as guidelines for 

how to move towards in-memory computing over time to 

improve both speed and scale together. 

First, we will compare the main PostgreSQL forks available 

to add speed and scale, along with recommendations for 

when to choose each option. Options evaluated include:

•	For speed: pgmemcache and the column store extension

•	 For OLTP scale: PostgreSQL replication, Citus Data, Post-
gres-XL, Second Quadrant, EnterpriseDB, and Amazon RDS 
for Postgres

•	 For OLAP/analytical scale: many of the traditional real-time 
data warehouse products including Greenplum (now open 
source), as well as cloud options such as Amazon Aurora.



4

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

LOWERING LATENCY: IN-MEMORY 
COLUMN STORE AND PGMEMCACHE

There are only a few options for lowering the latency of a 

PostgreSQL deployment. The first is simply to use a RAM disk 

for storage and attach it. Another is to look at UNLOGGED 

tables, if the table is significantly smaller than available RAM. 

Then there are two open source options: the in-memory 

column store and pgmemcache.

The in-memory column store is a drop-in extension to Post-

greSQL that stores data as columns in RAM in shared buf-

fers for the best analytical performance. The downsides are 

slower transactions and, more importantly, instabilities from 

shared buffers that were not really designed for this type of 

usage. Data can be lost even with the disk-based extensions.

The second option is pgmemcache. Basically, it adds user-de-

fined functions so that an application can use it in the context 

of PostgreSQL. You must change your applications so that 

pgmemcache can manage the cache. It is important to note 

that pgmemcache has many of the same limitations as Mem-

cached. While pgmemcache offloads reads from PostgreSQL 

and lowers read latency, it does not easily scale horizontally. 

Second, pgmemcache still requires an application to fetch 

data from the cache over a network. This does not seem like 

a big issue, but most corporate networks can at most move 

one gigabyte per second across all servers. Companies are 

increasingly hitting that limit. 

In short, there is no perfect option within PostgreSQL for 

lowering latency. 

OPTIONS FOR SCALING CORE 
POSTGRESQL VERTICALLY AND 
HORIZONTALLY

To improve scale, scaling vertically might seem like a good 

option in the short term. Like most other databases, Post-

greSQL does scale vertically. But it is not a cost effective, or 

(in several cases) a viable long-term option. Data is growing 

too fast for hardware and the capacity of a single machine 

or network. Hardware costs explode once they exceed the 

capacity of current commodity hardware.

Horizontal scalability is the only viable long-term option. Tra-

ditional horizontal scaling solutions such as replication can 

help with read scalability, but they do not help with scaling 

the size of the database or with write scalability. The best 

answer for both is to create a distributed database by hor-

izontally partitioning the data, SQL, and other computing.

Core PostgreSQL provides support for sharding data manually 

by key ranges, and for aggregate push downs. This may be 

enough for some deployments. But it is still largely a manual 

job to manage the partitions and replication for adding read 

scalability and failover, and rebalancing is hard. Sharding may 

not work well for managing many tables together support-

ing different workloads. In general, adopting a commercial 

PostgreSQL option, adding horizontal scale at another layer, 

or making changes to the application are better longer-term 

choices.

There are several commercial PostgreSQL offerings. Ama-

zon offers RDS for PostgreSQL, for example, which makes 

it easier to manage features like replication and failover. 

Azure and Google have similar offerings. Amazon Aurora is 

compatible with PostgreSQL and has horizontal scalability for 

online transactional processing (OLTP) applications. Amazon 

Redshift is based on PostgreSQL and has online analytical 

(OLAP) processing). 

There are a host of other vendors with their own OLAP 

implementations of PostgreSQL, including:

•	HP Vertica

•	Teradata (Aster Data)

•	 IBM Netezza

•	Pivotal Greenplum (which contributed their implementa-
tion to open source) 

Most of these vendors optimized for real-time ETL- or 

stream-based analytics and use columnar rather than row-

based storage for the data. This white paper does not offer 

a comparison of all these products. It focuses on the various 

options for adding speed and scale to OLTP and HTAP work-

loads. It is very important to note that OLAP and OLTP are 

very different with PostgreSQL and should not be compared. 

Do not try to use an OLTP-optimized version of PostgreSQL 

for OLAP, or vice versa.

The following is a comparison of the main open source and 

commercial options that you can add to PostgreSQL.

Horizontal Read Scalability: PostgreSQL 
Replication

Unlike several other databases, core PostgreSQL does pro-

vide hot standby replication using streaming from the write-

ahead logs (WAL). The hot standby servers can handle reads 

as well. They are asynchronous, however, so under certain 

conditions writes might not immediately be visible. Post-

greSQL also has a “warm standby option where a server is 

used only on failover. 

While replication does work, there are some challenges with 

failover both on the client and server side. Core PostgreSQL 

does not come with built-in monitoring and failover. By 



5

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

default, PostgreSQL needs to promote the secondary to be 

the primary and make sure clients write to exactly one pri-

mary. PostgreSQL clients also connect to a single endpoint. 

There is no automatic failover. As a result, when a primary 

fails the clients continue to retry and fail. In addition, when-

ever a secondary node must be recreated, unless using a 

third party vendor, you need to recreate the instance by 

replaying the entire history. You can either work out your 

own failover and recovery architecture or choose a vendor 

that simplifies it.

Horizontal Read Scalability: Pgpool-ii

Pgpool-ii is a middleware load balancer that is placed in 

between PostgreSQL and the applications to make a repli-

cated, highly available cluster look like a single PostgreSQL 

server to the application. Pgpool-ii provides read scalability 

by transparently handling all the routing, load balancing, and 

failover for the applications. To the applications, Pgpool-ii 

looks like the PostgreSQL database. Pgpool-ii does not help 

with write scalability in any way. It is not recommended for 

use as the replication mechanism (as noted by EnterpriseDB, 

a company that provides commercial support for Pgpool-ii 

and PostgreSQL).

Horizontal Read and Write Scalability: 
EnterpriseDB

One such commercial option that does simplify replication and 

failover is EnterpriseDB. EnterpriseDB was founded in 2004 

and employs several leading contributors to PostgreSQL. 

The EDB Postgres Platform includes EDB Postgres Advanced 

Server and a set of tools for business-critical deployments. 

One of the tools is EDB Postgres Replication Server (EPRS). 

It provides heterogeneous, multi-master bi-directional repli-

cation between EDB Postgres Advanced Server, PostgreSQL, 

Oracle and SQL Server. 

While Replication Server does work well, there are sev-

eral limitations. First, it is eventually consistent, relying on 

WAL-based asynchronous replication for PostgreSQL and 

EDB Postgres, and triggers that are outside of the transac-

tional context for Oracle and SQL Server. This means that 

transactions are not always truly guaranteed, though it does 

help automate any compensating transactions for conflicting 

writes. Second, for Oracle and SQL Server the trigger-based 

replication adds a significant load compared to WAL-based 

replication. This extra load might require additional server 

hardware and Oracle or SQL Server licenses. Third, while you 

can do (basic) range partitioning for tables, it is not auto-

matic or efficient by default. You must manage partitioning 

manually and make sure partitions work properly with aggre-

gate pushdowns across partitioned tables. In addition, you 

also must rebalance manually. Replication becomes more 

complex as well.

EnterpriseDB also used to have Infinite Cache, which acted 

as an application-transparent horizontally scalable write-

through cache that loaded and cached data as needed. This 

technology was deprecated as of Release 8.2.

Distributed Read Scalability: Postgres-BDR

2ndQuadrant, founded in 2001 by one of the leading con-

tributors to PostgreSQL, actively contributes to PostgreSQL 

and provides a host of tools, support, and services for Post-

greSQL deployments. One of their main open source con-

tributions is Postgres-BDR, or bi-directional replication. Like 

EnterpriseDB, BDR provides bi-directional replication. Unlike 

EnterpriseDB, it does not provide bi-directional integration 

with Oracle or SQL Server. But it does provide a choice of 

immediate (“eager”) or eventual (“fast”) consistency, whereas 

EnterpriseDB only supports eventual consistency. 

Postgres-BDR also supports both replication and sharding. 

Each table can be defined as replicated (where each node 

has a full copy of the data), or sharded/partitioned (where 

each node has its own partition of the data with optional 

copies across nodes for redundancy). Data placement of par-

titions can be based on hash tables or user-defined. Queries 

can also be run using aggregate pushdowns to help minimize 

network traffic.

Distributed PostgreSQL: Postgres-XL

2ndQuadrant also helped create Postgres-XL, a horizontal 

scalable version of PostgreSQL that is “very closely compat-

ible with PostgreSQL” according to 2ndQuadrant. The first 

question one should ask is why does 2ndQuadrant have both 

Postgres-BDR and Postgres-XL (since both seem to offer 

sharding)? The short answer is that while Postgres-BDR has 

basic sharding, it is not a distributed database and would be 

very hard to manage as a distributed database. Postgres-XL 

includes several optimizations for multi-node distributed 

queries (for massively parallel processing or MPP) including:

•	Replication to help scale reads

•	Dynamic data redistribution and balancing

•	Distributed transaction processing across partitions 

For transactions, Postgres-XL acts as a global XA coordinator 

across the nodes.

That said, there are some limitations. First, Postgres-XL is 

a fork of PostgreSQL and does not claim to be 100% com-

patible. Second, while it can now have a warm standby per 



6

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

node, if a partition is lost it takes time to recover. Third, even 

though it does have a global transaction coordinator that 

supports distributed transactions, it is designed for and only 

tested for asynchronous (optimistic) transactions, not syn-

chronous (pessimistic) transactions. In addition, the global 

transaction coordinator adds overhead, and each query or 

transaction can only use one core per node—which results 

in less scalability.

Distributed PostgreSQL: Citus Data

The other leading choice for truly distributed PostgreSQL 

is Citus Data, which was acquired by Microsoft in January 

2019. Citus is available as an open source or Enterprise 

version on-premise, or on Azure or AWS as a service. It is 

an extension to PostgreSQL that adds a cluster coordinator 

and worker nodes. The coordinator node is responsible for 

managing distributed SQL, which for queries involves trans-

forming queries into subqueries, sending the queries across 

the nodes, and aggregating the results. Citus supports mas-

sively parallel processing (MPP) for SQL by collocating data 

from related tables using their foreign key. It also supports 

zero-downtime rebalancing of shards as nodes are added to 

the cluster. Citus has had strong support for transactions 

within a single shard. As of release 7.1 in 2017 it now also 

supports distributed synchronous transactions and handles 

several distributed lock conditions across shards.

While Citus has many of the benefits of a distributed data-

base, and offers the best solution for distributed PostgreSQL, 

it also has the limits of a being just a good, distributed Post-

greSQL database. First, the options for lowering latency are 

limited when compared to an in-memory database. While 

Citus can scale out horizontally and use the combined RAM 

across a cluster, each node is still a PostgreSQL disk-based 

database. Using shared buffers to cache working data in 

RAM is an option, but it is not a memory-first architecture.

Second, Citus is a PostgreSQL-only solution. It does not, like 

most in-memory data grids, allow for merging data across 

heterogeneous databases for new uses, such as for build-

ing new APIs or accessing application data during stream 

processing. Many of the newer projects require accessing 

existing multiple databases, and most companies have not 

standardized on PostgreSQL. There are a host of other data-

bases as well.

Third, while Citus partitions data for distributed SQL and col-

locates SQL with data for MPP at scale, it does not partition 

the data and collocate Java, .NET, C++ or any other code. 

Collocation is a critical component of scaling out a distributed 

database for those use cases where the data is too big to 

move over the network. It not only requires code distribution 

as a compute grid. It requires partitioning the data the right 

way to minimize network traffic for the specific code. If a 

company has any such use cases they would need to move 

the data from Citus into another store to support their Java, 

.NET, C++ or other compute tasks. 

ADDING SPEED AND SCALE WITH IN-
MEMORY COMPUTING

The other main option for adding speed and scale is to use 

in-memory computing. The end goal of in-memory com-

puting is to move data into memory for speed, and to use 

a combination of a shared nothing architecture and MPP 

for linear, horizontal scale for all data-intensive workloads. 

HTAP needs both existing data in relational databases and 

new data, such as streaming data from Web interactions 

or devices, or social data that helps it understand customer 

preferences and relationships.

The most common first step is the use of in-memory com-

puting as an IMDG to existing applications, for two reasons. 

First, an IMDG adds in-memory speed and horizontal scal-

ability that is more cost-effective in the longer term than 

scaling up with expensive hardware. 

Do the math. Add up all the expected read and write scal-

ability needs for the next 3-5 years. Then figure out your 

long term options. Most companies discover the following: 

they can either spend the money now on expensive hard-

ware like Exadata, and then must implement an IMDG in the 

future or add the IMDG now and slowly grow it to the same 

size in the future assuming no other uses.

Second, an IMDG unlocks existing data for new uses, such as 

for real-time analytics, HTAP, streaming analytics or machine 

and deep learning. To support all these projects requires 

other capabilities, namely:

•	 IMDB support for storing and managing new types of data 
alongside existing data

•	 Streaming analytics support, including integration with 
other streaming technologies like Apache Kafka and Spark

•	Machine and deep learning support

Again, do the math. Identify the projects that can be achieved 

with existing data accessible in memory and add up the ROI 

over those 3-5 years. That is money lost without an IMDG as 

part of a broader in-memory computing platform. The ROI 

on those additional projects should be added to help decide 

between different in-memory computing technologies and 

other options.



7

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

HOW AN IMDG ADDS SPEED AND SCALE, 
AND UNLOCKS DATA 

An IMDG adds speed and scale by sitting in-between appli-

cations and databases, in the path of all reads and writes. It 

stores all data in-memory and keeps the data up to date by 

supporting a read-through/write-through cache pattern. It 

receives all writes, writes to memory, and then passes it on 

to the database as a transaction. If the database transaction 

succeeds, the IMDG commits to memory as well. Since this 

keeps all data in the IMDG in sync with the database, the 

IMDG can handle all reads directly. This lowers latency for 

reads because the data is accessed directly from RAM, not a 

disk-based database. An IMDG also adds scale by offloading 

all read workloads from the database. Most IMDGs can scale 

horizontally on commoditized hardware to handle increased 

read loads without putting additional loads on the database. 

This is much less expensive than buying specialized database 

hardware.

The easiest way to slide an IMDG in-between an application 

and PostgreSQL is for the IMDG to support PostgreSQL. If 

it does not support PostgreSQL, then write new code that 

replaces the SQL with a key-value API, and more code for 

the IMDG to access PostgreSQL. 

Most IMDGs also provide some form of massively parallel 

processing (MPP) where they divide up data into smaller sets 

across nodes and collocate code with the data (like Hadoop). 

MPP allows horizontal scalability of both the data and com-

puting, like the way MapReduce or Spark work. If the data is 

partitioned so that the computing has all the data it needs on 

each node, then the data does not need to be fetched over 

the network. This approach helps eliminate one of the most 

common performance bottlenecks in big data analytics and 

general big data computing, the network.

A PostgreSQL database does not support MPP. If moving 

data over the network is part of the performance issue, 

scaling PostgreSQL will not solve the problem. Also, part 

of the reason for adding an IMDG is to unlock data that is 

in PostgreSQL, to be able to use the data in new projects, 

including HTAP, without overloading PostgreSQL or requiring 

a hardware upgrade. PostgreSQL, and a database in general, 

does not support real-time analytics or high performance 

computing at scale. It doesn’t support Spark or other stream-

ing analytics technologies. It does not support general-pur-

pose machine or deep learning. All of these rely on MPP.

APACHE IGNITE AND THE GRIDGAIN IN-
MEMORY COMPUTING PLATFORM

GridGain is the leading in-memory computing platform for 

real-time business. It is the only enterprise-grade, commer-

cially supported version of the Apache® Ignite™ (Ignite) open 

source project. GridGain includes enterprise-grade security, 

deployment, management, and monitoring capabilities which 

are not in Ignite, plus global support and services for busi-

ness-critical systems. GridGain Systems contributed the code 

that became Ignite to the Apache Software Foundation and 

continues to be the project’s lead contributor. 

GridGain and Ignite are used by tens of thousands of com-

panies worldwide to add in-memory speed and unlimited 

horizontal scalability to existing applications, and then add 

HTAP to support new initiatives to improve the customer 

experience and business outcomes. With GridGain, compa-

nies have:

•	 Improved speed and scalability by sliding GridGain in-be-
tween existing applications and databases as an IMDG with 
no rip-and-replace of the applications or databases.

•	 Improved transactional throughput and data ingestion by 
leveraging GridGain as a distributed IMDB.

•	 Improved the customer experience or business outcomes 
by adding HTAP that leverages real-time analytics, stream-
ing analytics and continuous learning.

Figure 1. Apache Ignite and the GridGain In-Memory Computing Platform



8

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

GridGain customers have been able to create a new shared 

in-memory data foundation. This single system of record 

for transactions and analytics enables real-time visibility 

and action for their business. With each project, they have 

unlocked more information for use by other applications on 

a platform with real-time performance at peak loads and 

always-on availability. As a result, they have been able to 

develop new projects faster, be more flexible to change, and 

more responsive in ways that have improved their experi-

ences and business outcomes.

ADDING SPEED AND SCALABILITY TO 
EXISTING APPLICATIONS WITH AN IMDG 

One of the core GridGain capabilities and most common use 

cases is as an IMDG. GridGain can increase the performance 

and scalability of existing applications and databases by slid-

ing in-between the application and data layer with no rip-

and-replace of the database or application and without major 

architectural changes. 

This is because GridGain supports ANSI-99 SQL and ACID 

transactions. GridGain can sit on top of leading RDBMSs 

including IBM DB2®, Microsoft SQL Server®, MySQL®, Oracle® 

and Postgres® as well as NoSQL databases such as Apache 

Cassandra™ and MongoDB®. GridGain generates the appli-

cation domain model based on the schema definition of 

the underlying database, loads the data, and then acts as 

the new data platform for the application. GridGain handles 

all reads and coordinates transactions with the underlying 

database in a way that ensures data consistency in the data-

base and GridGain. By utilizing RAM in place of a disk-based 

database, GridGain lowers latency by orders of magnitude 

compared to traditional disk-based databases. 

STORING DATA FOR HIGH VOLUME, LOW 
LATENCY TRANSACTIONS AND DATA 
INGESTION WITH AN IMDB

A GridGain cluster can also be used as a distributed, transac-

tional IMDB to support high volume, low latency transactions 

and data ingestion, or for low cost storage. 

The GridGain IMDB combines distributed, horizontally scal-

able ANSI-99 SQL and ACID transactions with the GridGain 

Persistent Store. It supports all SQL, DDL and DML com-

mands including SELECT, UPDATE, INSERT, MERGE and 

DELETE queries and CREATE and DROP table. GridGain par-

allelizes commands whenever possible, such as distributed 

SQL joins. It allows for cross-cache joins across the entire 

cluster, which includes joins between data persisted in third 

party databases and the GridGain Persistent Store. It also 

allows companies to put 0-100% of data in RAM for the best 

combination of performance and cost.

The in-memory distributed SQL capabilities allow develop-

ers, administrators and analysts to interact with the GridGain 

platform using standard SQL commands through JDBC or 

ODBC or natively developed APIs across other languages as 

well.

Figure 2. GridGain as an In-Memory Data Grid (IMDG)

Figure 3. GridGain as an IMDB



9

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

network as a bottleneck by removing the need to move large 

data sets over the network to applications or analytics. 

ADDING DEEPER INSIGHTS AND 
AUTOMATION WITH STREAMING 
ANALYTICS AND CONTINUOUS LEARNING

The capabilities GridGain supports are not just limited to 

real-time analytics that support transactions. GridGain is also 

used by the largest companies in the world to improve the 

customer experiences or business outcomes using streaming 

analytics and machine and deep learning. These companies 

have been able to incrementally adopt these technologies 

using GridGain to ingest, process, store and publish stream-

ing data for large-scale, mission critical business applications.

GridGain is used by several of the largest banks in the world 

for trade processing, settlement and compliance. Telecom-

munications companies use it to deliver call services over 

telephone networks and the Internet. Retail and e-commerce 

vendors rely on it to deliver an improved real-time experi-

ence. And leading cloud infrastructure and SaaS vendors use 

it as the in-memory computing foundation of their offerings. 

Companies have been able to ingest and process streams 

with millions of events per second on a moderately-sized 

cluster.

GridGain is integrated and used with major streaming tech-

nologies including Apache Camel™, Kafka™, Spark™ and 

Storm™, Java Message Service (JMS) and MQTT to ingest, 

process and publish streaming data. Once loaded into the 

cluster, companies can leverage GridGain’s built-in MPP-style 

libraries for concurrent data processing, including concur-

rent SQL queries and continuous learning. Clients can then 

ADDING REAL-TIME ANALYTICS AND 
HTAP WITH MASSIVELY PARALLEL 
PROCESSING (MPP) 

Once GridGain is put in place, all the data stored in exist-

ing databases or in GridGain is now available in memory for 

any other use. Additional workloads are easily supported by 

GridGain with unlimited linear horizontal scalability for real-

time analytics and HTAP. 

GridGain accomplishes this by implementing a general pur-

pose in-memory compute grid for massively parallel pro-

cessing (MPP). GridGain optimizes overall performance by 

distributing data across a cluster of nodes and acting as a 

compute grid that sends the processing to the data. This 

collocates data and processing across the cluster. Collocation 

enables parallel, in-memory processing of CPU-intensive or 

other resource-intensive tasks without having to fetch data 

over the network. 

The GridGain Compute Grid is a general purpose framework 

that developers can use to add their own computations for 

any combination of transactions, analytics, stream process-

ing, or machine learning. Companies have used GridGain’s 

MPP capabilities for traditional High-Performance Computing 

(HPC) applications as well as a host of real-time HTAP appli-

cations. 

GridGain has implemented all its built-in computing on the 

GridGain Compute Grid, including GridGain distributed SQL 

as well as the GridGain Continuous Learning Framework 

for machine and deep learning. Developers can write their 

own real-time analytics or processing in multiple languages, 

including Java, .NET and C++, and then deploy their code 

using the Compute Grid. 

Collocation is driven by user-defined data affinity, such as 

declaring foreign keys in SQL DDL (data definition language) 

when defining schema. Collocation helps ensure all data 

needed for processing data on each node is stored locally 

either as the data master or copy. This helps eliminate the 

Figure 4. GridGain Compute Grid – Client Server vs Collo-
cated Processing (MPP)

Figure 5. GridGain for Stream Ingestion, Processing and 
Analytics



10

WHITE PAPERAdding Speed and Horizontal Scale to PostgreSQL

© 2019 GridGain Systems, Inc. 

SUMMARY

Applications and their underlying RDBMSs have been pushed 

beyond their architectural limits by new business needs, and 

new software layers. Companies must add speed, scale, agil-

ity, and new capabilities to support digital transformation 

and other business critical initiatives. There are some many 

options for adding speed and scale to PostgreSQL–and each 

has its place. But when the speed and scale needs extend 

beyond what can be addressed at the database layer, the 

best long term approach is in-memory computing. Not only 

does it add speed and scale, but it unlocks data, enabling 

companies to be much more agile.

subscribe to continuous queries which execute and identify 

important events as streams are processed.

GridGain also provides the broadest in-memory computing 

integration with Apache Spark. The integration includes 

native support for Spark DataFrames, a GridGain RDD API 

for reading in and writing data to GridGain as mutable Spark 

RDDs, optimized SQL, and an in-memory implementation of 

HDFS with the GridGain File System (GGFS). The integration 

allows Spark to:

•	Access all the in-memory data in GridGain, not just data 
streams 

•	 Share data and state across all Spark jobs

•	 Take advantage of all GridGain’s in-memory processing 
including continuous learning to train models in near re-
al-time to improve outcomes for in-process HTAP appli-
cations

GridGain also provides the GridGain Continuous Learning 

Framework. It enables companies to automate decisions by 

adding machine and deep learning with real-time perfor-

mance on petabytes of data. GridGain accomplishes this by 

running machine and deep learning in RAM and in place on 

each machine without having to move data over the net-

work. 

GridGain provides several standard machine learning algo-

rithms optimized for MPP-style processing including linear 

and multi-linear regression, k-means clustering, decision 

trees, k-NN classification and regression. It also includes a 

multilayer perceptron and TensorFlow integration for deep 

learning. Developers can develop and deploy their own algo-

rithms across any cluster as well as using the compute grid. 

The result is continuous learning that can be incrementally 

retrained at any time against the latest data to improve every 

decision and outcome.

Figure 6. GridGain for Machine and Deep Learning



© 2019 GridGain Systems. All rights reserved. This document is provided “as is”. Information and views expressed in this document, including URL and other web site references, 
may change without notice. This document does not provide you with any legal rights to any intellectual property in any GridGain product. You may copy and use this document for 
your internal reference purposes. GridGain is a trademark or registered trademark of GridGain Systems, Inc. Windows, .NET and C# are either registered trademarks or trademarks 
of Microsoft Corporation in the United States and/or other countries. Java, JMS and other Java-related products and specifications are either registered trademarks or trademarks 
of Oracle Corporation and its affiliates in the United States and/or other countries. Apache, Apache Ignite, Ignite, the Apache Ignite logo, Apache Spark, Spark, Apache Hadoop, 
Hadoop, Apache Camel, Apache Cassandra, Cassandra, Apache Flink, Apache Flume, Apache Kafka, Kafka, Apache Rocket MQ, Apache Storm are either registered trademarks 
or trademarks of the Apache Software Foundation in the United States and/or other countries. All other trademarks and trade names are the property of their respective owners 
and used here for identification purposes only.

Adding Speed and Horizontal Scale to PostgreSQL WHITE PAPER

11 May 22, 2019

About GridGain Systems 
GridGain Systems is revolutionizing real-time data access and processing with the GridGain in-memory computing platform built 

on Apache® Ignite™. GridGain and Apache Ignite are used by tens of thousands of global enterprises in financial services, fintech, 

software, e-commerce, retail, online business services, healthcare, telecom and other major sectors, with a client list that includes 

ING, Raymond James, American Express, Societe Generale, Finastra, IHS Markit, ServiceNow, Marketo, RingCentral, American 

Airlines, Agilent, and UnitedHealthcare. GridGain delivers unprecedented speed and massive scalability to both legacy and greenfield 

applications. Deployed on a distributed cluster of commodity servers, GridGain software can reside between the application and data 

layers (RDBMS, NoSQL and Apache® Hadoop®), requiring no rip-and-replace of the existing databases, or it can be deployed as an 

in-memory transactional SQL database. GridGain is the most comprehensive in-memory computing platform for high-volume ACID 

transactions, real-time analytics, web-scale applications, continuous learning and hybrid transactional/analytical processing (HTAP). 

For more information on GridGain products and services, visit www.gridgain.com.

Contact GridGain Systems
To learn more about how GridGain can help your business, please email our sales team at sales@gridgain.com, 

call us at +1 (650) 241-2281 (US) or +44 (0)208 610 0666 (Europe), or complete our contact form at www.gridgain.com/

contact and we will contact you.

http://www.gridgain.com
mailto:sales@gridgain.com
https://www.gridgain.com/contact
https://www.gridgain.com/contact

