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To many software developers, machine 
learning is like rocket science: too compli-
cated and not living up to its full potential. 
For those who don’t understand the un-
derlying principles, the subject seems too 
complex to tackle. For those who do try 
to get started, it’s not clear which tools 
to use. For those who have already im-
plemented some form of machine learn-
ing, the concept of continuous learning, 
which is what we humans do as a matter 
of course in our daily lives, seems out of 
reach. The reason is that it takes too long 
to manage, move, and (re)train models, 
given the amount of data needed to cre-
ate a reasonably accurate model.

But continuous machine and deep learn-
ing is attainable. This machine learning 
eBook series is designed to give devel-
opers a basic understanding of machine 
and deep learning, hands-on experience 
with Apache Ignite to get up and running 
quickly with continuous learning, and tips 
to help avoid some of the more common 
challenges.

This eBook Series

The series is broken into five parts:

• Part 1: A Machine and Deep Learn-
ing Primer

• Part 2: Hands-on Machine Learning 
Using Apache Ignite

• Part 3: Hands-on Machine Learning 
for Fraud Detection at Scale Using 
Apache Ignite

• Part 4: Hands-on Deep Learning Us-
ing the Apache Ignite Genetic Algo-
rithm

• Part 5: Hands-on Deep Learning Us-
ing TensorFlow with Apache Ignite

The series is designed to be flexible and 
useful. Start with the primer now for 
a basic understanding of the concepts. 
Then continue with the hands-on topics 
as you need them, in any order.
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A MACHINE AND DEEP LEARNING PRIMER

The opportunities to use machine learning are everywhere. 

The enormous quantities of data now available, driven by 

our online lives and constant digital connectivity, has made 

the turn to machine learning possible. But it is the recent 

growth in computing capabilities, along with advances in the 

machine learning technologies, that have made that turn 

inevitable. 

With machine learning, statistical algorithms are used with 

massive amounts of data to discover patterns and insights 

that enable us to better predict probable outcomes in a vari-

ety of domains. Machine learning algorithms help programs 

learn and adapt, adjusting themselves as needed to provide 

better and more accurate answers. This is the wave of the 

future, one that will either help augment or replace most 

applications. The turn to machine learning and deep learning 

will change the world as we know it. 

WHAT IS MACHINE LEARNING? 

In traditional programming, software architects model tasks 

down to the smallest detail, and then programmers imple-

ment each task and every possibility in code. While there is 

some flexibility through configuration, in general each pro-

gram cannot change what it does without changing code.

With machine learning, programs can change their own 

behavior after having been trained to find the significant and 

relevant patterns in a set of data. Machine learning algo-

rithms find “instructions”—that is, the weights to apply to the 

formulas—based on what they discover in the data they’ve 

been fed. Software developers or analysts gather and pre-

pare the data, ensuring that it is tidy and accurate, without 

any misleading biases that might distort the findings. They 

determine which algorithm or algorithms are best suited 

for the task at hand, and run them on a percentage of the 

dataset designed to “train” the algorithm to create a model. 

They then usually test the model against different datasets 

to determine whether what the model has learned in training 

is accurate enough. 

A fully trained model is the goal. A trained model can be 

applied to new data (of the sort it has been trained to work 

with), at any time, to do whatever it was trained to do: 

predict probable values; classify data or images; or cluster 

objects based on similar characteristics. 

Machine learning is driving innovation in every industry, 

and every domain. The promise of machine learning is to 

replace basic human decision-making with automated deci-

sion-making, and to help guide more complicated decisions 

at scale, to deliver quick-turnaround answers in real time, at 

a rate no human could ever manage on their own. 

Today we can see machine learning influencing many parts 

of our daily lives:

• An ecommerce site that provides recommendations based 
on previous user selections

• Mail programs that detect and flag potential spam

• Increasingly, programs that calculate our credit scores

• Property sites that calculate the optimum price for a given 
house in a given market 

• Applications that help identify diseases in difficult-to-di-
agnose cases  

But existing uses of machine learning have focused on rela-

tively simple problems where the data and the outcomes are 

relatively constant. For machine learning to make a big impact 

in our daily lives, it needs to adapt quickly to ever-changing 

conditions and criteria. It must support continuous learning 

based on new data, so as to stay nimble and relevant. The 

challenge is that continuous learning is hard when massive 

amounts of data must be moved around or streamed, pro-

cessed, and reflected in the models in real time.

WHAT IS DEEP LEARNING?

Deep learning is a subset of machine learning. Machine 

learning is divided into two types: shallow and deep. The 

so-called shallow machine learning is the traditional machine 

learning pipeline: 

• Supervised learning: The data that the algorithms work on 
is labeled with the correct outcomes

• Unsupervised learning: The data is entirely unlabeled, and 
the algorithms find the patterns

• Reinforcement learning: Uses a reward-based feedback 
loop

In deep learning, there are many more algorithms at work, 

and the work they perform proceeds in a kind of black box, 

with little explanation for how the algorithms arrive at the 

answers they do. These are the “hidden layers” of the deep 

neural networks. Deep learning architecture was an attempt 

to create a structure that imitates the human brain, although 

the structure and processing are statistical and mathematical 

in nature. 
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THE BIG CHALLENGES WITH MACHINE 
LEARNING 

It ought not to come as a surprise that the biggest challenge 

with machine learning is not which algorithms to choose, but 

the training of those algorithms. In other words, it’s the data, 

or more precisely, the amount of data and the current state 

it represents. To become accurate and reliable, the predictive 

models of machine learning must crunch their way through 

massive amounts of data—sometimes terabytes or more. In 

addition, the data must accurately reflect the current state 

of whatever is happening. The algorithm creates an approx-

imate model based on the behaviors and conditions of that 

time, both of which can and often do change. So models 

need to be continually tested for accuracy, and retrained 

whenever the estimates are not good enough. Some call this 

approach continuous learning. This is what we do as people, 

so it shouldn’t be surprising that as we try to automate deci-

sions currently made by people, that it’s what we want out 

of machine learning.

Unfortunately, it’s hard to implement continuous learning. 

One reason is that it takes too long to train and retrain 

models on traditional infrastructure. The first big challenge 

is that data must be “ETL”ed – Extracted, Transformed, and 

Loaded. Most machine learning is conducted on specialized 

infrastructure, not directly where the data is stored. So first, 

the data must be moved across a network, which can take 

hours. A typical corporate 10 GigE network can only move 

roughly a gigabyte a second fully loaded, or 3.6 terabytes 

an hour, without any network collisions, and then only if it 

were dedicated to just one task. The data may also need to 

be transformed, cleansed, and enriched before being loaded, 

which can also take time.

Second, most machine learning infrastructure, while designed 

to run machine learning algorithms, does not scale well in 

practice when dealing with terabytes or petabytes of data. It 

can take hours to train or retrain models even once the data 

is loaded. While a delayed time frame may be sufficient for 

some applications where behavior doesn’t change that often, 

like a manufacturing line, it does not work well when behav-

ior changes more frequently, such as anything involving peo-

ple, or even the weather. With any moving targets like these, 

it’s important to be continuously retesting and retraining the 

model. And in order to continuously retrain, that means the 

latest data must be processed and models retrained in real 

time, similar to the way streaming analytics works. Ideally, 

testing and retraining happens fast enough to impact each 

interaction and decision as the changes are detected, before 

the first bad decision happens. This is exactly how people 

avoid bad decisions. They operate based on the latest infor-

mation and adapt in real time.

If you understand these points, then you probably will arrive 

at the same conclusion others have: that there is one clear 

way to implement continuous machine learning.

1. To process this much data in real time, machine learning 
must be horizontally scalable and run against data already 
in RAM. This is possible because many machine learning 
algorithms and data are parallelizable.

2. Since the data cannot be moved fast enough to do 
the training, the machine learning algorithms must run in 
place, where the data is stored.

3. In order to react fast enough during operations, the in-
frastructure must be collocated with any transaction or 
stream processing that is using the machine learning re-
sults.

At first glance, this may not seem possible without rewriting 

both the applications and the machine learning infrastruc-

ture. Luckily, companies have already been adding technol-

ogies to existing systems and newer applications, APIs, and 

real-time analytics that satisfy all three criteria: in-memory 

computing. 

THE SOLUTION: IN-MEMORY COMPUTING

In-memory computing has been used for the last decade to 

add speed and scale to existing applications, to ingest mas-

sive datasets in real time, and to perform real-time analytics 

and high-performance computing. These problems have very 

similar characteristics to machine and deep learning. 

In-memory computing adds speed by moving data from 

hard drives (HDDs) into memory (RAM). While HDD media 

speeds are measured in milliseconds, RAM speeds can be 

measured in nanoseconds, a million times faster. In-memory 

computing adds linear, horizontal scalability by partitioning 

data across a cluster of machines, or nodes. To avoid moving 

large datasets over the network, in-memory computing also 

moves the code—whether it’s SQL, Java, .NET or C++—to 

each node and then aggregates the results, similar to the 

way Hadoop works. 

Once applications and streaming analytics are running on 

in-memory computing, adding machine and deep learning 

becomes straightforward. You implement algorithms as code 

that can be distributed across an in-memory computing clus-

ter. The cluster can then be configured and further scaled 

to run model testing, training, and retraining continuously in 
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place, in memory, and in parallel with decision automation. 

By adding in-memory speed and unlimited horizontal scale, 

in-memory computing enables models to adapt to new con-

ditions before a bad decision is made. 

GRIDGAIN® AND APACHE® IGNITE™: 
IN-MEMORY COMPUTING AND 
ENHANCED SUPPORT FOR CONTINUOUS 
LEARNING

Apache Ignite (see Figure 1) is one of the top five Apache 

Software Foundation (ASF) projects and the leading ASF 

project for in-memory computing. Ignite is an in-memory 

computing platform that includes an in-memory data grid 

(IMDG), in-memory database (IMDB), support for streaming 

analytics, and a continuous learning framework for machine 

and deep learning. It provides in-memory speed and unlim-

ited horizontal scalability to:

• New or existing online transaction processing (OLTP) or 
online analytical processing (OLAP) applications

• New or existing hybrid transactional/analytical processing 
(HTAP) applications

• Streaming analytics

• Continuous learning use cases involving machine or deep 
learning

Continuous learning was added last, in part because those 

applications that already required speed and scale also 

needed speed and scale for any decision automation using 

machine or deep learning, which meant running continuous 

learning in place.

GridGain (see Figure 1) provides the only enterprise-grade, 

commercially supported version of the Apache Ignite open 

source project, and it is the only company that provides 

commercial support for Apache Ignite open source-based 

deployments as well. GridGain Systems contributed the code 

that became Ignite to the Apache Software Foundation and 

continues to be the project’s lead contributor. GridGain is 

100% compatible with Ignite. GridGain focuses on adding 

improved connectivity and integration, security, deployment, 

management and monitoring capabilities, and on hardening 

and patching Ignite for business-critical deployments.

When GridGain originally contributed the code to the Apache 

Ignite project, Ignite was primarily used as an in-memory 

data grid (IMDG). At the heart of the Ignite architecture is 

memory-centric storage spread across a cluster of nodes, 

and a compute grid that distributes code to each node, 

runs it in parallel across the nodes, and then aggregates the 

results, similar to the way MapReduce works. This is referred 

to as massively parallel processing, or MPP. Over time, as 

companies expanded their use of in-memory computing, the 

Apache Ignite project added distributed SQL, an in-memory 

database (IMDB), streaming analytics, and machine learn-

ing on top of Ignite’s core architecture. Streaming analytics 

includes the broadest integration with Apache Spark when 

compared to other in-memory computing technologies. 

Ignite became a natural fit to provide in-memory data man-

agement for Apache Spark where the Hadoop Distributed File 

System (HDFS) falls short as disk-based storage, as well as a 

platform to “push down” certain computing to the compute 

grid and run at scale. As Apache Spark processing capabilities 

evolved to support machine and deep learning, so too did 

Apache Ignite. Apache Ignite machine and deep learning is a 

set of simple, scalable, and efficient algorithms implemented 

on top of the Ignite compute grid that allow the building of 

predictive machine learning models in place, without costly 

ETL data transfers over the network.

The GridGain editions include all of the capabilities of Apache 

Figure 1. Apache® Ignite™ and GridGain® In-Memory Computing Platform
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Ignite, including machine learning and deep learning. So in 

this eBook, when we refer to Ignite, we mean both Ignite 

and GridGain.

CONTINUOUS MACHINE LEARNING

The machine learning capabilities of Apache Ignite enable 

the building of predictive models directly within Ignite. This 

allows users to achieve scale and performance without costly 

ETL or data transfer (see Figure 2).

Previously, machine learning models had to be trained and 

deployed on different systems. For example, data would 

need to be moved to specialized infrastructure, where train-

ing would be performed using one set of tools. Then models 

would be deployed into production systems using a second 

set of tools. This previous approach had several drawbacks:

• There was a lengthy ETL process, particularly for very large 
datasets, that could take hours to move, cleanse, and en-
rich. Datasets can be hundreds of gigabytes or terabytes 
in size.

• Datasets often pushed the capacity of a single server on 
systems that only supported scaling up. It made scaling 
more expensive and led to longer training times.

• ETL meant the developer was taking a snapshot of the 
data, not using the live data, which meant the models 
were effectively out of date. 

• It required retraining the models each time they changed, 
which involved long wait times.

Ignite solves these problems by moving the machine and 

deep learning directly to the decision-making systems and 

the data:

• Ignite can work on the data in place, avoiding costly ETL.

• Ignite can scale to petabytes of data in any combination of 
RAM, NVRAM, and disk across thousands of nodes for the 
best combination of speed and scale.

• Ignite can ingest and process streaming data in real time to 
update models, and use model updates midstream during 
transactions also running on Ignite.

• Data models in Ignite can be used for runtime decision 
automation within the same cluster as the operational sys-
tems. You don’t need a second set of tools.

ZERO NETWORK-BASED ETL, 
IN-MEMORY SPEED, AND HORIZONTAL 
SCALABILITY

Apache Ignite machine and deep learning is built on Ignite’s 

memory-centric storage, which eliminates the need for 

network-based data movement as part of the ETL process 

for machine and deep learning by bringing the learning to 

the data and running it with in-memory speed and mas-

sive horizontal scalability. Ignite provides a host of data 

preprocessing, machine and deep learning algorithms that 

are optimized to leverage Ignite’s MPP capabilities. These 

implementations are optimized to run in place at once across 

large clusters and massive datasets, or incrementally against 

incoming data streams. You can also implement your own 

algorithms on top of the Ignite compute grid in Java, .NET, 

or C++, or even leverage SQL. This support for both full and 

incremental training enables continuous learning that can 

improve decisions based on the latest data as it arrives in 

real time. 

The built-in algorithms and use of the compute grid makes 

it easy to add machine and deep learning to existing Ignite 

deployments that already support transactional systems. 

Ignite can also easily support new data being loaded or 

streamed as needed. Because Ignite scales horizontally, 

additional workloads including machine and deep learning 

can be run against the same data without impacting the per-

formance of the existing applications. Additionally, APIs can 

be hosted on Ignite that use any models to help automate 

decisions. These APIs can be collocated with any related 

computing to deliver the fastest results.

FAULT TOLERANCE AND CONTINUOUS 
LEARNING

Once you move to continuous learning, you need to make 

sure your systems do not go down. It’s not just that your 

models become out of date. When you move to delivering 

real-time support to a customer, you need to be able to han-

dle exceptions in real time, which means stream processing 

cannot go down. 

Apache Ignite machine learning has a host of features that 

help maximize availability. For example, it can keep multiple 

copies of the same data, and reroute requests automatically 

in the case of a node failure. It supports having clusters 

span multiple data centers. GridGain makes multi-data- 

Figure 2. Ignite Machine and Deep Learning
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center management and disaster recovery easy to manage. 

All recovery procedures are transparent to the applications. 

Existing processes, including machine and deep learning 

along with any use of the models in production, continue to 

run without interruption. All of these features are automati-

cally leveraged by machine and deep learning.

PARTITION-BASED DATASETS

Horizontal scalability is easy to say and hard to do. The data 

must be partitioned across the cluster in such a way that 

when the code executes on each node, it has all the data it 

needs without having to fetch more over the network. Once 

data has to move over the network, it can bring machine and 

deep learning performance to a grinding halt. 

Ignite solves this problem by supporting various predefined 

and user-defined partitioning algorithms. Partitioning pro-

vides an abstraction layer that sits between a machine learn-

ing algorithm and the storage and compute be applied to 

the Key of a Key-Value (K-V) pair to determine where the 

Value is stored in a cluster. The Value is stored in a partition. 

Partitions are atomic. It helps ensure the data is sent to the 

right node in advance to help minimize network traffic during 

Figure 3. Partition-based Dataset and Context 

execution. Ignite preprocesses data on each node, creates a 

new cache for training data, and then executes the model 

training. Once the algorithms have executed, the results are 

then aggregated using MapReduce. Partitioning can create a 

master and multiple copies across the cluster for maximum 

performance and availability in the event of individual node 

failures.

For example, if you have a two-node cluster there could be 

two corresponding partitions P1 with data D1 and P2 with 

data D2 (see Figure 3). The machine learning algorithms will 

have a separate cache to manage the context of the machine 

and deep learning with its own partitions on each node, P3 

with C1, and P4 with C2. The model training results from 

each node are then combined and become the initial model 

for a client doing the model execution.

In the event of a node failure, Ignite can recover the partition 

and context (see Figure 4). For example, node 2 could have 

a backup of data and context for node 1 and become active 

whenever node 2 fails. Context is automatically backed up. 

Training data is usually recovered from the cluster by re-run-

ning preprocessing routines and ETL (marked D*).

CLASSIFICATION REGRESSION CLUSTERING

Description

Identify to which category a 
new observation belongs, on 
the basis of a training set of 

data

Modeling the relationship 
between a scalar dependent 
variable y and one or more 

explanatory variables x

Grouping a set of objects in 
such a way that objects in the 
same group are more similar 

to each other than to those in 
other groups

Applicability
spam detection, image recog-
nition, credit scoring, disease 

identification

Drug response, stock prices, 
supermarket revenue

Customer segmentation, 
grouping experiment out-
comes, grouping shopping 

items

Algorithms
SVM, nearest neighbor, deci-
sion tree classification, neural 

network

Linear regression, decision tree 
regression, nearest neighbor, 

neural network
K-means

Table 1. Machine learning algorithms

Figure 4. Node Grid
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TYPES OF MACHINE AND DEEP LEARNING ALGORITHMS

Now that you have a basic understanding of machine and deep learning, you need to start to understand the different algo-

rithms. Ignite supports a host of different types of machine learning algorithms (see Table 1): classification, to identify a type 

of object or data point using supervised learning; regression, to calculate a result from various inputs; and clustering, to try to 

identify groups using unsupervised learning. For other algorithms, you can either turn to the Ignite community for examples 

or implement your own. Ignite also supports preprocessing the data to prepare data for these various types of learning. 

Regarding deep learning, there are some prebuilt algorithms, including a multilayer perceptron and a genetic algorithm. But 

most people are interested in TensorFlow. Ignite 2.7 added support for TensorFlow, so people could use it directly against 

data in Ignite for speed and scale.

WHERE TO GO NEXT

The next two eBooks, Parts 2 and 3, give hands-on examples on how to use these different types of machine learning. Part 

4 covers how to use the genetic algorithm. Part 5 focuses on using TensorFlow.

You can always go online and get started now on the machine and deep learning resource center.

About GridGain Systems 
GridGain Systems is revolutionizing real-time data access and processing with the GridGain in-memory computing platform built 

on Apache® Ignite™. GridGain and Apache Ignite are used by tens of thousands of global enterprises in financial services, fintech, 

software, e-commerce, retail, online business services, healthcare, telecom and other major sectors, with a client list that includes 

ING, Raymond James, American Express, Societe Generale, Finastra, IHS Markit, ServiceNow, Marketo, RingCentral, American 

Airlines, Agilent, and UnitedHealthcare. GridGain delivers unprecedented speed and massive scalability to both legacy and greenfield 

applications. Deployed on a distributed cluster of commodity servers, GridGain software can reside between the application and data 

layers (RDBMS, NoSQL and Apache® Hadoop®), requiring no rip-and-replace of the existing databases, or it can be deployed as an 

in-memory transactional SQL database. GridGain is the most comprehensive in-memory computing platform for high-volume ACID 

transactions, real-time analytics, web-scale applications, continuous learning and hybrid transactional/analytical processing (HTAP). 

For more information on GridGain products and services, visit www.gridgain.com.

Contact GridGain Systems
To learn more about how GridGain can help your business, please email our sales team at sales@gridgain.com, call us at +1 

(650) 241-2281 (US) or +44 (0)208 610 0666 (Europe), or complete the form at https://www.gridgain.com/contact to have 

us contact you.
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