
EBOOK

Best Practices for Digital
Transformation with In-Memory
Computing
Part 2: Adding Speed and Scale to Existing Applications

2 © 2019 GridGain Systems, Inc.

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

Most companies face an unprecedented challenge around

performance and scalability with their existing applications.

Over the last decade, there has been a 10-100 times growth

on average in queries and transactions. Data has grown 50

times in that period, with as much as 10 times occurring in

the last two years alone. Many processes that used to take

hours or more must now act as real-time processes that can

be completed in seconds (such as one-click shopping).

These performance and scalability challenges are the result

of the adoption of new customer-facing Web and mobile

channels, of new technologies such as the Internet of Things

(IoT), and of new types of data including social and machine

data. All of these initiatives have to integrate with existing

applications, and use existing data. Their increased adoption

has driven up transaction, query, and data volumes, as well

as a demand for real-time responsiveness.

IN THIS SERIES

This eBook series outlines the successful digital transfor-

mation journeys companies have taken, and some of the

common best practices they have followed. The first eBook

explained best practices for building a foundation for digital

transformation. This eBook explains the best practices for

adding speed and scale to existing applications that offer the

least disruption and meet the long term goals of transforming

the business. Subsequent eBooks cover other project types.

Consult the eBooks in this series in sequence or in random

order, depending on your sequence of projects—after all,

each digital journey is different.

BEST PRACTICES FOR ADDING SPEED
AND SCALE TO EXISTING APPLICATIONS

In this eBook, you will learn about best practices for adding

performance and scalability to existing applications:

• Best Practice 1: Use Scale-Up Hardware Money to Invest in
the Right Architecture

• Best Practice 2: Plan Ahead for the Right Architecture—
HTAP at Scale with IMC

• Best Practice 3: Build an IMDG to Add Speed and Scale to
Existing and New Apps, APIs, and Analytics

• Best Practice 4: Make Sure You Can Implement a Horizon-
tally-Scalable IMDB

• Best Practice 5: Ensure General-Purpose MPP

• Best Practice 6: Keep Prioritizing Real-Time Projects Based
on a Greater Plan

• Next Steps: Plan Ahead to Succeed with Other Types of
Real-Time Projects

BEST PRACTICE 1:
USE SCALE-UP HARDWARE MONEY TO
INVEST IN THE RIGHT ARCHITECTURE

Many companies try to support their growth by scaling the

databases that support existing applications. There are three

problems with this approach:

1.Most new initiatives that add loads to existing apps by ac-
cessing their data need to merge the data across apps. This
merge, which happens outside the database, is also part of
the performance problem.

2.No matter how fast you make the database, it cannot low-
er end-to-end latency that is outside the database, which
is also a major part of the problem.

3.Scale-up hardware is VERY EXPENSIVE! It is also only a
short-term band-aid, not a long-term solution.

Regardless of the cost, trying to support growth by scaling

the underlying databases vertically with bigger hardware does

not work in the long run. The performance and scalability of

a single server might grow as fast as Moore’s Law (about two

times every 18 months), but not as fast as needed, which is

about 10 times or greater every few years. And adoption of

all these technologies has only just started – we can expect

this rate of growth to continue over the next decade.

Even though it is well known that vertical scaling is an even-

tual dead end, it is often hard to find an alternative architec-

ture for several reasons:

• The application architecture makes changing it too diffi-
cult, too time-consuming, or flat-out impossible.

• The focus is just on fixing the app in the short term, not
the long-term.

• The root causes of performance and scalability issues re-
side outside of the group’s control.

Spending all your money on vertical scaling that does not

address your long-term performance and scalability issues

is a waste. That money is better spent on an architecture

that DOES address performance and scalability issues. The

question is, what is the right architecture?

https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1

3 © 2019 GridGain Systems, Inc.

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

BEST PRACTICE 2:
PLAN AHEAD FOR THE RIGHT
ARCHITECTURE—HTAP AT SCALE WITH
IMC

There is only one way to deliver the speed, scale, and real-

time responsiveness needed to become a digital business. It

is implementing what Gartner coined as a Hybrid Transac-

tional/Analytical Processing (HTAP) architecture. To support

digital business transformation and other new applications

(such as IoT), HTAP must both respond to any individual

request at up to 1000 times scale AND execute analytics

and automation in real-time. This is only possible by building

a horizontally scalable in-memory computing (IMC) archi-

tecture that supports general-purpose computing collocated

with the data for many different needs.

Move Data into Memory for Speed

As a beginning step, how do you lower latency. Just do the

math first:

• How many hops do you add over the network across all
your layers?

• How fast is each layer?

• How fast does each layer need to be?

• What new processes do you want to add?

• What new decision automation?

With all this information, now you can ask yourself “How

do I deliver sub-second response times, every time, to a

customer using their mobile app?”

The only answer is to have all the needed data ready for the

app as close to the app as possible: in memory.

Store Data Horizontally for Scale

Now, consider how to scale a database and its transactions

to 100 times or more. All the individual scaling issues with

each of the apps makes this challenging enough. But when

you add merging all this data, because you must, it is even

more daunting. You cannot scale to 100 times by scaling

each application vertically and throwing hardware at the

problem. The only way to handle both the size of the data

and the amount of interactions is by scaling horizontally.

Apache Hadoop proved that horizontal scalability is possible.

Since then, several architectures have proved this approach

works for real-time computing, including Apache Ignite.

To scale horizontally with linear scalability, technologies like

Apache Ignite use a “shared-nothing” architecture. In this

approach, the data is broken up into separate partitions that

can be moved to any node in a cluster. The hard part is

not partitioning the data, but to partition it in such a way

that each node can run SQL or any other computing inde-

pendently of the other nodes. The key is to partition data

across nodes so that it supports distributed transactions or

writes and minimizes network traffic. One of the major rea-

sons databases were scaled vertically on a single server was

that the network itself was a bottleneck. This changed when

software vendors figured out how to collocate code with

data and execute massively parallel processing (MPP).

Collocate Data and Compute (MPP) for
Speed, Scale, and Automation

Third, look at how to execute real-time computing at scale.

Similar to the way Hadoop is architected for batch process-

ing, any real-time architecture also needs to collocate data

and compute tasks to ensure speed and scale for real-time

computing.

Most companies rely on separate online transactional pro-

cessing (OLTP) and online analytical processing (OLAP) data

pipelines out of necessity. Most existing OLTP technologies

only scale vertically and are not well suited for perform-

ing OLAP. OLTP applications also do not have all the data

needed to analyze the business. Companies turned to effi-

cient approaches to Extract, Transform, and Load (ETL) data

from different siloed applications and piece all the data

together into a data warehouse, data mart, or data lake that

was better suited for analytics.

An ETL-based OLAP architecture meant the data would

be out of date by the time it was in the data warehouse.

This was good enough until real-time operational analytics

were needed. Some companies tried to accelerate ETL and

real-time analytics with specialized hardware. But vertically

accelerating the wrong architecture using expensive hard-

ware eventually failed, for a couple of reasons:

• First, the data became too big to hold on a single machine.
Some companies tried to solve this with Hadoop. But while
Hadoop does scale, it was not designed for real-time ana-
lytics. It is a batch-based architecture.

• Second, a separate ETL-based pipeline takes a lot of pro-
cessing and network hops to move the data away from
where real-time analytics need to happen. The network
has become a bigger problem since the data is often big-
ger than the network capacity. Most networks handle 1GB
per second (at most). But the amount of data needed by
many customer-facing and IoT applications reaches giga-
bytes or more per second at peak times. Many companies
have terabytes of historical data about customers. Con-
nected vehicles, for example, now generate terabytes to

4 © 2019 GridGain Systems, Inc.

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

petabytes of data. Even if extra bandwidth were added,
waiting one second to move the data over each segment
of the network can be too long.

The best solution for real-time analytics with large data sets

is to partition the data across several machines—or nodes—in

a cluster and then move the computing tasks—the code—to

the data (since the code size is much smaller). In the case of

real-time analytics, for example, this means collocating both

the real-time and any needed historical data sets together

with the relevant analytical computing to ensure real-time

responsiveness. This is called collocated computing, or MPP.

Hadoop MapReduce is an example of batch- or micro-batch-

based MPP. The Apache Ignite Compute Grid, which also

implements MapReduce as well as distributed SQL, is an

example of (near) real-time MPP.

HTAP at Scale with IMC

This ability to perform analytics, or OLAP, in the same place

as OLTP is what Gartner calls HTAP.

In-memory computing is widely recognized as the foundation

for HTAP. An IMC architecture enables companies to store

data in memory, scale data out horizontally, and perform

MPP. All three are needed to deliver (near) real-time HTAP

at scale. This combination within IMC does not just add 10

to 1000 times speed and scale. The ability to collocate code

with the data makes it possible to perform analytics and

continuous learning in real-time, during a transaction or

interaction. IMC can perform real-time analytics or machine

learning—without impacting the performance of the core

transactional systems—by scaling horizontally and adding

more nodes to spread the load.

It is very important to recognize that HTAP is different from

data warehousing, business intelligence, and ad hoc analyt-

ics. HTAP does not replace traditional analytics—at least not

for some time. Both are needed today, and each have their

own strengths. But only HTAP can deliver real-time analytics

that are fast enough to impact a transaction or interaction.

BEST PRACTICE 3:
BUILD AN IMDG TO ADD SPEED AND
SCALE TO EXISTING AND NEW APPS,
APIS, AND ANALYTICS

The early adopters of in-memory computing realized that if

they were to succeed in adding speed, scale, and real-time

intelligence as part of their digital transformation and other

Figure 1. Collocated computing, or MPP

HomeAway Delivers a Seamless
Personalized Experience
When HomeAway became a go-to site for vacation

rentals, network bottlenecks quickly followed. To

calculate daily rental rates for vacation homes in real

time and for each interested traveler, HomeAway

needed to run as many as 2300 batches of calculations

per second. Each batch contained 200 calculations and

each calculation required 250K of data. 250K multiplied

by 200 calculations and then by 2300 batches is 115

GB. HomeAway needed 115 GB of data per second to

run their pricing calculations at peak load times.

Moving 115 GB of data per second across a network is

not feasible. HomeAway would need over 100 typical

corporate networks to handle their peak loads. And even

then, they might need to wait one second or more just

to get the data across the network—an unacceptable

delay when consumers expect total response times of

one second or less.

When software architect Chris Berry of HomeAway did

this math, he realized HomeAway needed an in-memory

data architecture that could collocate processing with

data—in other words, send the calculations to the data.

The ability to collocate processing with data was one

of the key reasons that HomeAway first chose Apache

Ignite, the open source project GridGain is built on. With

Apache Ignite, HomeAway’s network bottleneck went

away.

Watch the HomeAway In-Memory Computing Summit

Presentation

Computation

Result

in
Time

C1

NODE 3

NODE 2

NODE 1

C2

Cn

R1

R2

Rn

https://www.imcsummit.org/2017/us/sessions/ignite-compute-grid-in-cloud
https://www.imcsummit.org/2017/us/sessions/ignite-compute-grid-in-cloud

5 © 2019 GridGain Systems, Inc.

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

initiatives in the long run, then they needed to add in-mem-

ory computing up front. The main question was how to add

in-memory computing and HTAP without having to rip out

and replace existing applications or databases. The first step

for most was IMC technology that could act as in-memory

data grid (IMDG).

Add Speed and Scale to Applications with
an IMDG

An IMDG adds speed and scale to applications by sitting in-be-

tween an application and the underlying database. It imple-

ments a read-through/write-through cache pattern by sitting

in the path of all queries and transactions. For all writes,

or transactions, it writes to memory and to the underlying

database. It can often be write-through where this is done

synchronously (as a pessimistic transaction), or write-behind

where the write to the database is done asynchronously (as

an optimistic transaction). This approach keeps the in-mem-

ory layer completely in-sync with the database. It allows the

IMDG to directly handle all queries, thereby offloading all

reads from the database. This gives the existing database a

lot of room for future growth since most of the load for most

customer-facing applications come from reads, and an IMDG

can deliver unlimited horizontal read scalability.

There are a few critical capabilities an IMDG needs to help

minimize any rework.

• SQL Support. Ideally the existing application does not need
to know the IMDG exists. For SQL-based applications, that
means the IMDG should be able to fully support SQL. The
application should be able to take a new JDBC or ODBC
driver as the new integration point. The IMDG would then
intercept, process and manage any SQL.

• Distributed pessimistic ACID Transactions. The IMDG must
be able to support ACID transactions for any writes. It
needs to act as a transaction coordinator to ensure write
consistency between the in-memory layer and the data-
base, to keep both in sync. It needs to support synchro-
nous, pessimistic transactions because applications gener-
ally expect those from the existing RDBMS. If the data is
scaled horizontally, that means it must be able to support
distributed in-memory transactions.

There are a host of other capabilities needed for an IMDG. But

if an IMDG does not support SQL and distributed pessimistic

ACID transactions, the application needs to be rewritten. If

the IMDG does not support SQL, all the SQL needs to be

replaced (usually with key-value operations), which takes a

significant rewrite of the logic around the data as well. If the

IMDG does not support pessimistic transactions, compensat-

ing transactions are needed. However, applications that rely

Adding Speed, Scalability and
Analytics at Wellington Management
Wellington Management is one of the top 20 global asset

management firms in the world, with more than $1 trillion in client

assets under management.

Wellington had three major challenges:

1. Its current systems were no longer scalable due to an exploding

growth of financial data. It needed horizontal scalability to

handle the long-term growth.

2. The 2008 financial crisis resulted in a wave of new financial

regulations that resulted in more complexity and risk in existing

systems.

3. Many more new and complex asset classes have been introduced

in the last few years based on customer demand, and there is a

big need to release new asset classes faster

Wellington’s solution was to deploy its investment book of record

(IBOR) on the GridGain in-memory computing platform. The

Wellington IBOR serves as the single source of truth for investor

positions, exposure, valuations, and performance. All trading

transactions and account and back office activity flow through the

IBOR in real time.

• Horizontal Speed and Scalability: Wellington’s IBOR has

unlimited horizontal scalability. It uses GridGain’s SQL support

to add speed and scalability by sliding in-between Oracle, its

system of record, and the applications. The result is at least 10

times faster performance by adding in-memory computing on

top of its Oracle database deployment.

• Use of HTAP: The IBOR is an HTAP system that is used by

portfolio management teams for real-time position, market

value, exposure, and performance analytics; by risk management

teams for risk analytics and overall risk management; and by

compliance teams to ensure, in real-time, that all regulatory

requirements are met.

Why Wellington chose GridGain

• In-memory computing

• Horizontally scalable

• Supports distributed SQL

• ACID compliant (consistent data)

• Collocates data and computing

• Combines operational and analytical workflows (HTAP)

GridGain In-Memory Computing Platform

In-Memory
Database

In-Memory
Data Grid

Continuous
Learning Framework

Streaming
Analytics

Oracle RAC

Investment
Book of Record

(IBOR)

Trading
Systems

Accounting
Systems

Other
Back Office

Portfolio
Management

Risk
Management

Regulatory &
Compliance

6 © 2019 GridGain Systems, Inc.

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

on exact values—bank account balances, inventory levels,

etc.—usually require pessimistic transactions.

Companies that adopted an IMDG up front generally found

it less expensive in the short term. It often paid for itself

because it was cheaper than buying new scale-up hardware.

Said another way, a good IMC best practice is to first choose

projects where performance and scalability challenges are

very expensive to fix with hardware. Each project should be

able to show a positive ROI.

Build a Bridge to the Right Architecture

Many of these companies also looked to the future, and

realized that, while IMC is an investment, adopting IMC one

project at a time was the most cost-effective, lowest-risk

approach. But it did require leadership to guide investments

across projects. Beyond picking the right order for projects,

it meant making decisions within each project on what addi-

tional longer-term investments to make.

This cross-project approach to IMC meant they needed to

choose the right IMC technology that could act as more than

just an IMDG. It needed to provide a bridge to the right long-

term architecture and support other types of projects needed

for real-time business.

One reason IMC needs to span projects and applications is

that it needs to bring together all real-time data. An IMDG

unlocks any data in existing applications. Once the data is

in-memory, it can be merged with other data and used by

other applications, APIs, or analytics. Any new workload –

including creating new APIs or adding analytics and decision

automation – can be handled by adding more nodes to the

cluster without impacting the performance of the existing

applications.

What early adopters of IMC realized was that if the IMDG is

part of a broader IMC architecture or common platform that

can be used across projects, then it is possible to build a

common real-time data, application, API, and analytics layer

over time.

Add Real-Time Analytics and Decision
Automation

Beyond application speed and scale, one of the more com-

mon IMC uses is augmenting existing applications with real-

time analytics, or using various forms of decision automation

including machine and deep learning.

Real-time analytics requires analyzing real-time and his-

torical data together in (near) real-time. The optimal place

to do this is within the operational applications. But most

applications were not built to support these capabilities. An

IMDG combines real-time and other data with MPP that can

run real-time analytics against all the data at scale. It makes

an IMDG a great option for augmenting existing applications

with analytics. (This will be explained later in more detail in

the eBook on real-time analytics projects.)

Add Speed and Scale to Existing and New
Real-Time APIs

The ability to combine data also makes an IMDG ideal for

APIs. An API by design is meant to provide a single, sim-

ple view of information about a customer, an account, or

a service, along with the operations to use the data. This

data usually resides across many disparate legacy systems.

It is not possible to first access the data in each system via

middleware layers that in turn access each application, that

in turn access each database; then merge all these results

together across applications in a new layer AND get fast per-

formance. The fastest way is to have all the data already

together, merged in memory, ready for each API to consume.

BEST PRACTICE 4:
MAKE SURE YOU CAN IMPLEMENT A
HORIZONTALLY-SCALABLE IMDB

While an IMDG that offloads reads solves many companies’

initial challenges with speed and scale, eventually higher

write throughput is needed.

First, there are many new types of data that are much bigger

data sets than the traditional data. Transactional data is per-

haps only 10% of the total data stored by a company today.

Web session data, social data, and machine data from IoT

can be terabytes or petabytes. They result in much higher

data ingestion rates. They also lend themselves to horizontal

scalability. An IoT network or mobile applications can range

from hundreds to millions of connections. The ideal archi-

tecture for ingesting these new types of streaming data is to

scale out and ingest horizontally, not vertically.

Second, existing applications can also have performance and

scalability issues with writes. In that case an IMDG archi-

tecture on its own is not enough. They need a horizontally

scalable database architecture.

7 © 2019 GridGain Systems, Inc.

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

An in-memory database (IMDB) solves both issues. But you

need to plan ahead and make sure you have an easy transi-

tion from an RDBMS to an IMDB. Otherwise you end up with

a major code rewrite as you rip out and replace an existing

IMDG and/or database with data infrastructure.

Make sure your IMC architecture supports an easy transition.

The best approach is to implement an IMDG that includes the

following capabilities:

• Persistence that can be turned on any time for any data
stored in an RDBMS, and that can inherit its schema. This
makes it easier to decommission an RDBMS that may al-
ready be underneath an IMDG.

• The ability to merge data in memory across multiple data
stores. Most databases do not provide this capability.

• Transactional consistency that ensures data is never lost.
While that may seem simple and works properly for many
IMDB-based technologies, not all IMDG technologies are
fully ACID-compliant. This means that will not support pes-
simistic transactions.

• Persistence that allows only a subset of data to be in mem-
ory, with most data stored on lower-cost storage. While it
is possible to hold just about any data set in memory with
a horizontally-scalable IMDG, it is not always cost-effec-
tive.

The last capability is to make sure you can perform gener-

al-purpose MPP that allows any computing to be run locally

against the data on each node.

BEST PRACTICE 5:
ENSURE GENERAL-PURPOSE MPP

One of the most important attributes of any IMC architecture

is the “C”: the computing. As mentioned earlier, the only way

to add both speed and scale is to move data into memory

for speed, partition data horizontally, and then collocate data

with all of the relevant real-time computing. If you cannot

collocate specific code with the data, you are limiting your

ability to reuse data.

There are many deployment architectures that work. Most

companies using Apache Ignite, for example, rely on Docker

to package APIs and IMC technology together on each node,

along with the Ignite Compute Grid to execute collocated

code.

Regardless of which technology, it is important that you have

a general-purpose MPP framework. It is necessary when

using MPP to add speed and scale to a host of different code

bases over time:

• Web and Mobile code: REST APIs have become the main
way to access any capabilities in web and mobile apps.
Therefore, it is critical to have support for invoking collo-
cated functionality via REST.

• Data access, analytics and transactions: SQL is the most
popular data language by far, and the second most popu-
lar language overall after JavaScript. But other models are
also important, such as key-value APIs.

• Applications and APIs: There are almost too many lan-
guages to count, and most should be supported at least as
clients. Evaluate which languages are most important can-
didates for MPP across projects. Java, .NET and C++ are
common candidates.

BEST PRACTICE 6:
KEEP PRIORITIZING REAL-TIME PROJECTS
BASED ON A GREATER PLAN

Just a continual reminder. As mentioned throughout, plan

to use the same in-memory computing technology across

applications. It enables you to add speed and scale to exist-

ing applications. It also helps you succeed with digital trans-

formation and becoming a real-time business because it:

• Opens up and combines data across existing applications
for new uses, such as supporting new APIs that can be
consumed by anyone

• Supports new workloads by scaling horizontally, which
makes it easier to deliver new capabilities in days without
having to change existing applications.

• Allows you to ingest massive amounts of data in real-time
and combine it with existing data, during transactions and
interactions, to streamline, react to, and improve each step
of the customer’s experience.

Keep in mind that this is a journey that requires careful plan-

ning. You might need to implement projects in a certain

order, so that for each step you have already built out the

parts to make a given project succeed and to get a positive

return on each investment.

8 © 2019 GridGain Systems, Inc.

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

Keep in mind the same guidelines discussed in part 1 of this

eBook series:

• Review any requests for hardware and additional software
licenses. Ask whether in-memory computing would make
sense. Many such projects are adding vertical scalability to
handle increasing loads in the short term, when in fact the
better longer-term answer is in-memory computing.

• Review any database purchases or re-platforming projects
that rip out and replace an existing database. They are of-
ten being done to improve performance and scalability.
In-memory computing might be the better answer, espe-
cially if performance and scalability issues are due to large
read- and data-intensive computing workloads.

• Review all the backend sources for new API development.
Determine what additional loads will be created and con-
sider whether the use of in-memory computing or other
technologies would lead to a better architecture.

• Add speed and scale to existing systems before building
new APIs. Existing systems need to be able to handle the
additional loads.

• Consider grouping projects together that access the same
systems. Many companies have not sufficiently enforced a
common access layer and implemented a single in-memo-
ry computing layer that controls all write access for appli-
cations from different parts of the company. This can cre-
ate more work in the end trying to maintain consistency
across applications. Commitment to a common layer is a
lower-cost and lower-risk approach (if possible).

• Order your projects by understanding your data dependen-
cies for each project, and knowing what data needs to be
in-memory for each project to succeed. If a project is de-
pendent on other data being in-memory, either work on
moving that data into memory first, or combine the proj-
ects.

NEXT STEPS:
PLAN AHEAD TO SUCCEED WITH OTHER
TYPES OF REAL-TIME PROJECTS

The focus of this eBook was on how to add speed and scale

to existing applications as a first step in a longer journey

involving digital transformation and other major initiatives.

The next eBooks are guides for each type of project you

might tackle in your journey. Different topics include:

• Building an in-memory computing foundation and road-
map

• Adding speed and scale to existing applications (current
eBook)

• Developing new apps and APIs

• Leveraging and integrating with cloud services

• Implementing HTAP

• Building event-driven applications and streaming analytics

• Adding machine and deep learning to help automate de-
cisions

Go to the resource section at www.gridgain.com for more

information on any of these eBooks, related webinars, or

customer examples. For more information on this ebook

series or any other GridGain ebook, visit https://www.

gridgain.com/resources/ebooks.

https://www.gridgain.com/resources/in-memory-computing-resources
https://www.gridgain.com/resources/ebooks
https://www.gridgain.com/resources/ebooks

© 2019 GridGain Systems. All rights reserved. This document is provided “as is”. Information and views expressed in this document, including URL and other web site references,
may change without notice. This document does not provide you with any legal rights to any intellectual property in any GridGain product. You may copy and use this document for
your internal reference purposes. GridGain is a trademark or registered trademark of GridGain Systems, Inc. Windows, .NET and C# are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Java, JMS and other Java-related products and specifications are either registered trademarks or trademarks
of Oracle Corporation and its affiliates in the United States and/or other countries. Apache, Apache Ignite, Ignite, the Apache Ignite logo, Apache Spark, Spark, Apache Hadoop,
Hadoop, Apache Camel, Apache Cassandra, Cassandra, Apache Flink, Apache Flume, Apache Kafka, Kafka, Apache Rocket MQ, Apache Storm are either registered trademarks
or trademarks of the Apache Software Foundation in the United States and/or other countries. All other trademarks and trade names are the property of their respective owners
and used here for identification purposes only.

9

Part 2: Adding Speed and Scale to Existing ApplicationsBest Practices for Digital Transformation with In-Memory Computing

June 21, 2019

About GridGain Systems
GridGain Systems is revolutionizing real-time data access and processing with the GridGain in-memory computing platform built

on Apache® Ignite™. GridGain and Apache Ignite are used by tens of thousands of global enterprises in financial services, fintech,

software, e-commerce, retail, online business services, healthcare, telecom and other major sectors, with a client list that includes

ING, Raymond James, American Express, Societe Generale, Finastra, IHS Markit, ServiceNow, Marketo, RingCentral, American

Airlines, Agilent, and UnitedHealthcare. GridGain delivers unprecedented speed and massive scalability to both legacy and greenfield

applications. Deployed on a distributed cluster of commodity servers, GridGain software can reside between the application and data

layers (RDBMS, NoSQL and Apache® Hadoop®), requiring no rip-and-replace of the existing databases, or it can be deployed as an

in-memory transactional SQL database. GridGain is the most comprehensive in-memory computing platform for high-volume ACID

transactions, real-time analytics, web-scale applications, continuous learning and hybrid transactional/analytical processing (HTAP).

For more information on GridGain products and services, visit www.gridgain.com.

Contact GridGain Systems
To learn more about how GridGain can help your business, please email our sales team at sales@gridgain.com, call us at

+1 (650) 241-2281 (US) or +44 (0)208 610 0666 (Europe), or go to complete our contact form at www.gridgain.com/contact

and we will contact you.

http://www.gridgain.com
mailto:sales@gridgain.com
http://www.gridgain.com/contact

