
EBOOK

Best Practices for Digital
Transformation with In-Memory
Computing

Part 3: Building New Apps and APIs

2 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

Most companies face an unprecedented challenge around

performance and scalability with their new and existing

applications. Over the last decade, there has been a 10-100

times growth on average in queries and transactions. Data

has grown 50 times in that period, with as much as 10 times

occurring in the last two years alone. Many processes that

used to take hours or more must now act as real-time pro-

cesses that can be completed in seconds (such as one-click

shopping).

This growth in data has created a problem: all these new

channels must be integrated with the existing IT systems

that support customers and the business, and the existing

systems cannot handle the required levels of the speed and

scale. This new growth requires a new, real-time business

layer that meets the demands of digital business to:

•	Open up business assets as APIs.

•	Add real-time analytics and decision automation.

•	 Enable much greater agility.

•	Deliver unlimited speed and scale.

•	Allow incremental IT change instead of requiring a "Big
Bang" approach.

Fortunately, several early adopters of in-memory computing

have successfully implemented an API-centric architecture

that works. This eBook summarizes some of their best prac-

tices.

IN THIS SERIES

This eBook series outlines the successful digital transforma-

tion journeys companies have taken, and some of the com-

mon best practices they have followed. Part 1 of this eBook

series, Building an In-Memory Computing Foundation and

Roadmap, explained best practices for building a foundation

for digital transformation.

Part 2 of this series, Adding Speed and Scale to Existing

Applications, focused on the right long-term approaches for

adding speed and scale to existing applications being over-

whelmed in part by new digital channels.

This eBook explains the best practices for building new apps

and APIs to ensure they perform, scale, and are flexible to

change.

Subsequent eBooks cover other project types.

Consult the eBooks in this series in sequence or in random

order, depending on your sequence of projects—after all,

each digital journey is different.

BEST PRACTICES FOR ADDING SPEED
AND SCALE TO NEW APPS AND APIS

In this eBook, you will learn about best practices for adding

speed and scale to new apps and APIs using in-memory

computing:

•	Best Practice 1: Design APIs Around the Customer
Experience

•	Best Practice 2: Build a New Real-Time API Layer on In-
Memory Computing

•	Best Practice 3: Build A New Real-Time Layer on Top of
Existing Systems

•	Best Practice 4: Build Real-Time Data, Events, Tasks, and
Processes

•	Best Practice 5: Free Your Data! Now!

•	Best Practice 6: Design With HTAP in Mind

•	Best Practice 7: Keep Prioritizing Real-Time Projects
Based on a Greater Plan

•	Next Steps: Plan Ahead Towards Real-Time/ Streaming

Analytics and Decision Automation

BEST PRACTICE 1: DESIGN APIS AROUND
THE CUSTOMER EXPERIENCE

Solving most IT challenges requires a combination of the

right people, processes, and technology. Digital business is

no different. Even if you put in place the right technology

and architecture, you will probably fail if you do not put in

place the right people and processes. If you read nothing else

in this eBook, closely examine the first two best practices. In

many ways, they are the most important. If you understand

these first two points, the others will make more sense (even

if you do not review and use them for a while). This first

best practice is mostly about people, not technology. But it

should help you understand how to justify any digital busi-

ness-related project.

Digital Business initiatives have some of the largest IT bud-

gets. It used to be that only 20% of a typical IT budget went

to delivering new applications or infrastructure. According to

some estimates, digital business-related initiatives are now

using as much as 40% of the IT budget.

Why? The answer is simple. On average, digital business can

deliver more to growth and the bottom line than any other

initiative. The reason is that the purpose of digital business

is to improve the customer experience. A Harvard Business

School Study found that with an increased focus on the

customer, the top 25% of digital leader enterprises outper-

formed the bottom 25%, with 50% greater earnings. The

https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/ebooks/best-practices-digital-transformation-part-2-speed-scale-apps
https://www.gridgain.com/resources/ebooks/best-practices-digital-transformation-part-2-speed-scale-apps

3 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

full benefits of improving the customer experience are even

greater: it can help double revenues and more than double

profits within ten years.

But to reap the benefits, you need to focus on the customer

experience. As explained in Part 1 of this eBook series, Build-

ing an In-Memory Computing Foundation and Roadmap, you

need to design inward from the customer’s perspective. To

put it into API management terminology, you should design

from the outside in. Companies such as ING Bank that have

succeeded in these initiatives were completely aligned from

the CEO to the engineers around the customer experience.

This means making sure the organization structure and roles

are in place, usually within an API management or digital

business group that can cut across different parts of the

company. This structure is sometimes called a center of

excellence (COE). There should also be executive sponsors

and champions of the overall initiative who have the author-

ity to realign siloed organizations around customer-centric

processes.

To ensure this group succeeds, it is a good idea to define a

few other roles. Within the group you should see the follow-

ing roles and responsibilities defined:

•	Chief customer officer: someone usually outside of IT
who is responsible for the customer experience.

•	Chief digital officer: a leadership role, ranging from an
IT director up to CIO, who is responsible for leading the
digital business initiative.

•	Process architects: architects focused on designing
and implementing customer processes that improve the
customer experience.

•	System architects: architects responsible for the overall
architecture of the new real-time business layer, which is
more than API management by necessity

•	Data architects: architects who are often in a data
governance or integration group responsible for helping
ensure data quality and consistency.

“40 percent of all technology spending
will go toward digital transformations, with
enterprises spending in excess of $2 trillion in
2019”

Goal of Digital Business: Improve
the Customer Experience
Leading digital companies generate better gross margins,

better earnings and better net income than organizations

in the bottom quarter of digital adopters.

Improving the customer experience by becoming more

digital is worth more than your entire IT budget, not just

the project, if you focus on the customer.

The leaders seem to be 50% more profitable than

the laggards, pulling in 5% more. And even they are

not realizing the full benefits. As we went through in

the first webinar, the total benefits can be doubling

revenues and more than doubling profits over a ten year

period or less.

It is also about survival. If you do not succeed in delivering

a great customer experience, you will probably die as a

company.

What that means for your projects is that you need to

be aligned with an executive sponsor, and your digital

business initiatives somehow tied to improving the

customer experience as well.

Leaders post a three-year average gross margin of 55

percent, compared to just 37 percent for the laggards.

Leaders also outstrip laggards in three-year average

earnings 16 percent to 11 percent. And in three-year

average net income, leaders have the advantage 11

percent to seven percent.1

"It's a pretty substantial gap and it correlates with

performance in significance ways," says Iansiti, a

professor of business administration at HBS, who

collected his research from more than 300 senior

business and technology decision makers from large

enterprises.

1  https://www.cio.com/article/3122806/it-industry/digital-

laggards-must-harness-data-or-get-left-behind.html

PERFORMANCE
METRIC

DIGITAL LAGGARDS
(BOTTOM 25% OF

ENTERPRISES)

DIGITAL LAGGARDS
(TOP 25% OF
ENTERPRISES)

3-Year Average Gross

Margin1
37% 55%

3-Year Average Earn-

ings Before Taxes
11% 16%

3-Year Average Net

Income
7% 11%

https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.cio.com/article/3122806/it-industry/digital-laggards-must-harness-data-or-get-left-behin
https://www.cio.com/article/3122806/it-industry/digital-laggards-must-harness-data-or-get-left-behin

4 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

•	API Product Manager(s): the people that own the APIs
and define them based on how consumers use them
as products, and how they impact the end customer
experience.

•	Project architects and developers: staff meant to lead or
augment various projects led by other groups as needed.
These architects and developers help provide the core
expertise across the company.

BEST PRACTICE 2: BUILD A NEW
REAL-TIME API LAYER ON IN-MEMORY
COMPUTING

The second best practice requires much more explanation

and patience. What several early adopters came to realize

is that the right long-term architecture for API manage-

ment should be built on in-memory computing (IMC). To

understand why, you first need to understand the goals of

real-time digital business, and how the underlying challenges

with speed, scale, and agility make IMC the only answer.

There are three basic goals of API management as a part of

any digital business initiative:

•	Open existing systems as APIs.

•	Deliver APIs in days, not in months or years.

•	 Improve the real-time customer experience and business
operations.

There is a fourth goal that many companies unfortunately

realize mid-way through their digital journey:

•	Deliver a 10-1000 times increase in speed and scale.

The last point is the easiest place to start to describe the

right architecture.

Deliver a 10-1000 Times Increase in
Speed and Scale

Existing systems that can only scale vertically will not support

the 10-100 times growth in interactions and transactions.

Part 2 of this series, Adding Speed and Scale to Existing

Applications, explained that the right architecture for adding

the needed speed and scale is in-memory computing (IMC).

What became clear to people implementing API manage-

ment at scale is that IMC must be part of the API itself, not

just layered in between existing applications and databases.

Do the math regarding speed and latency. People expect

that any Web or mobile application must respond in under

one second, all the time. API calls go over the Internet and

across multiple internal network hops, processing layers,

security, and policy management before the actual API call

is made. In the case of ING Bank, that travel time left only

100 milliseconds for the API call itself. This included four

internal layers of APIs, then a call over middleware to access

multiple applications, which in turn accessed multiple data-

bases. In short, it was not possible to get a response in an

acceptable time frame. The only way to deliver an acceptably

fast response time was to already have the data in-memory

within the API.

To scale IMC with APIs, IMC must be collocated with each

node. The most common deployment architecture with APIs

is a combination of Docker and Kubernetes, where the node

of an in-memory data grid (IMDG) is included in each Docker

container. As the API instance initializes, so does the node. It

attaches to the existing cluster, brings in any relevant data,

and begins to handle requests.

Open Existing Systems as APIs

For most companies, API management involves exposing

existing systems instead of building new ones from scratch.

The principles of being API-first, designing APIs from the

outside-in, treating an API as a product, and managing the

API lifecycle and API community are all part of API man-

agement. So are the best practices for layering API security,

identity, policy management, and orchestration. Eventually,

API design works its way down to the existing systems.

The ability to combine data also makes an IMDG ideal for

APIs. An API by design is meant to provide a single, simple

view of information about a customer, an account, or a ser-

vice, along with the operations to use the data. This data

usually resides across many disparate legacy systems. It is

not possible to:

•	 First access the data in each system via middleware
layers.

•	 Then access each application.

Figure 1. API-Centric Architecture on IMC

https://www.gridgain.com/resources/ebooks/best-practices-digital-transformation-part-2-speed-scale-apps
https://www.gridgain.com/resources/ebooks/best-practices-digital-transformation-part-2-speed-scale-apps

5 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

•	 Then access each database.

•	 Then merge all these results together across applications
in a new layer AND get fast performance.

The fastest way is to locate all the data together, merged in

memory, ready for each API to consume. An IMDG as part of

a data service keeps the most up-to-date version of the data

in memory, which allows it to support all queries directly

within the API.

To support data services, beyond providing horizontally scal-

able in-memory data management, any IMDG architecture

must support two key features to make it easier to adopt:

•	SQL Support. Most data services rely on SQL access.
An existing API should be able to take a new JDBC or
ODBC driver as the new integration point with an IMDG.
Developers working on new APIs should be able to
leverage SQL instead of writing extra code to translate
the data when accessing an existing database.

“WE WANT TO BE A TECH COMPANY WITH A BANKING LICENSE.”

— Ralph Hamers, CEO, ING Group

How to Create The Right Real-Time API Architecture
ING’s use of IMC within their API architecture is a great example of what a scalable, real-time, and flexible API architecture with IMC

should look like.

On top of their existing applications and their existing channels, ING built two API

layers.

•	 The first layer is data services, which bring together data from different databases

and applications into a single, simple view of a customer or account. By embedding

an IMDG node that holds all the relevant data in memory within each API, the APIs

can deliver sub-100 millisecond response times every time.

•	 The second layer is focused on the customer experience within each channel, and

across them. IMC is used to store the customer’s session state and other information.

This in turn is used to improve the responsiveness of the experience. Since there was

no other place for holding the current state, IMC became the system of record for

the current experience.

Two important notes. First, each API layer is in fact two layers: a set of private APIs

used to expose specific capabilities, and a set of public APIs that are consumed by

others. This combination is a best practice that makes the APIs much more flexible to

underlying change. For each underlying application change, one to three private APIs

might change. Another private or public API might be changed to add new functionality.

But the public API interface, which is a public contract with anyone using it, can stay

the same.

Second, there are at least two layers of security needed on top of the APIs. The outermost

layer often performs application-level attack prevention and authentication. The layer

below it usually performs authorization and enforces data security and business policies

including audit and compliance. These two layers are critical because APIs are used by

the outside world—as a mobile app, a cloud app, or an external partner.

This API architecture is at the core of ING’s innovation. It helped cut ING’s end-to-end

latency to less than 100 milliseconds. It also helped the bank rapidly create new APIs

from microservices for consumers and third parties, and be first-to-market with new

services for the revised Payment Services Directive (PSD2), the Single Euro Payment

Area (SEPA) initiative, and instant payments.

Watch the ING In-Memory Computing Summit presentation.

Existing Systems

Data Services

Public APIs

Private APIs

Business Services

Public APIs

Private APIs

API Identity and Trust

API Authorization

API Policy Management

API Firewall

Threat Protection

Authentication

HadoopRDBMSMainframe NoSQL

https://www.imcsummit.org/2017/eu/sessions/journey-use-imdg-strengthen-electronic-banking-offering-ing-be

6 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

•	Distributed Pessimistic ACID Transactions. An API
expects SQL to just work. When an API makes a
distributed write across existing system to commit
changes to a customer or account, the developer should
not have to worry about the complexity. The IMDG
needs to act as a transaction coordinator to ensure write
consistency across existing applications. Developers
expect distributed, synchronous, pessimistic transactions
to just work.

Deliver APIs in Days, Not in Months or
Years

For enterprises embracing digital transformation, the goal is

to be as agile as the new Internet startups—such as Amazon,

Expedia, eBay or PayPal—that have disrupted their respective

industries. This is not easy for existing enterprises because

they must build on top of existing IT systems that cannot be

changed in days.

An IMDG also helps solves another major challenge: how to

open data for use by new apps and APIs to become more

agile. While a private/public API architecture helps APIs be

much more flexible to change than the underlying applica-

tions, it is still hard to access existing data. Beyond integra-

tion, each application needs to ensure they can handle the

additional load.

Whenever an IMDG is used with an existing application,

unlocking the data becomes easy. An IMDG provides linear

horizontal scalability when implemented properly. By provi-

sioning copies of the data on additional nodes as needed,

an IMDG helps ensure that increased loads do not impair the

performance of existing applications. The IMDG becomes the

fastest way to access any data an application needs.

Improve the Real-Time Customer Experi-
ence and Business Operations

Improving the customer experience is the true goal of digital

business. Beyond just making integration easier, it requires

adding real-time intelligence and decision automation. The

same APIs initially used to open up operations also have to

be extensible to allow real-time analytics and automation

using technologies like machine and deep learning. This part

of intelligent decision automation often comes last. The first

step of improving the experience is often just implementing

a better process, not automating it. But the architecture you

choose needs to support this longer term goal or the business

benefits will not be realized in the long term. This requires

in-process Hybrid Transactional/Analytical Processing (HTAP),

which as explained in Part 1 of this eBook series, Building

an In-Memory Computing Foundation and Roadmap, is the

ability to perform analytics in-process, during the transaction

or interaction. In other words, the IMC layer that functions

as an IMDG should also be able to support in-process HTAP.

More on this later.

BEST PRACTICE 3: BUILD A NEW REAL-
TIME LAYER ON TOP OF EXISTING
SYSTEMS

Another point that was made in Part 1 was that digital busi-

ness needs to happen in real-time. However, many of the

existing systems are not real-time, cannot support real-time

interactions, and cannot provide real-time visibility either.

The only way to support real-time transactions and analytics

is to build a new real-time layer using in-memory computing

that processes real-time data and reacts in real-time. This is

usually provided by an API management layer, that in turn

has its own real-time data managed by an IMC layer.

The question becomes how to keep this real-time data

in sync with batch and other non-real-time systems. The

answer, which is the same answer for most integration

architectures, is to trick the existing systems into operating

as-is. The architecture works as follows. First, send real-

time transactions to the newly built real-time layer. As each

real-time transaction happens, it will pass the transaction to

the existing system (at some point). The new layer passes

the transaction through to the existing system the old way,

transparently, as if the new system had done nothing yet. It

is up to the IMC layer to determine whether to coordinate

the transaction in both systems synchronously or asynchro-

nously. For example, for existing batch-based systems, the

Figure 2. Public and Private APIs

https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1

7 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

pass-through transaction is typically “fire and forget”—mean-

ing it is simply passed onto the system without requiring any

transaction acknowledgment.

Second, for any changes that occur in the existing systems, a

synchronization layer built outside the application propagates

any changes that occur to the real-time layer. There are two

approaches you can refer to as sync or CDC.

Sync refers to the preferred IMDG architecture. You slide an

IMDG in-between the application and database in the path

of all reads and writes. The IMDG is then able to keep the

data in memory in sync with the database. If another appli-

cation can write to the underlying database without passing

through the IMDG, you can build an integration layer based

on triggers against the database or new logic that pushes any

changes to the IMDG synchronously or asynchronously. One

leading fitness company takes this approach, pushing any

updates from their backend system to the new app.

If you cannot control all writes to the database via appli-

cations a second approach is to leave writes as-is (going

directly to the database), but then change all reads to point

to the IMDG. You then use change-data-capture (CDC) to

continually update the in-memory data with any changes as

they occur. CDC typically adds a 2-5% load on the database,

which is much more efficient than using triggers to capture

any changes. CDC captures all writes exactly once off the

write-ahead logs (WAL) used for transactions, and streams

them out to a target operational data store. GridGain sup-

ports this use case with a connector for Oracle GoldenGate.

Both sync and CDC are perfectly valid, broadly-used archi-

tectures.

An IMC layer not only improves responsiveness. It helps with

availability as well. As explained in more detail in Part 1 of

this eBook series Building an In-Memory Computing Foun-

dation and Roadmap, having the data already merged and

up-to-date means that for any queries, the existing systems

do not have to be available.

BEST PRACTICE 4: BUILD REAL-TIME
DATA, EVENTS, TASKS, AND PROCESSES

Building a real-time business layer does not just require

implementing API management. APIs are basically just steps

in a process. You are also implementing new, real-time pro-

cesses that are composed of real-time:

•	Data

•	 Events

•	 Tasks

•	Other processes

So, it follows that you have to practice all these disciplines

together. Successful digital transformation initiatives often

have architects who help design all aspects of processes,

including how to react to important events. The trick is to

add different tools and capabilities only when each capability

is truly needed and will deliver a positive return on invest-

ment.

Generally, to make digital business work, there are a number

of layers that get built on top of existing middleware, and

alongside or on top of API management. You need to identify

when and how you build out these layers across projects

over time, based on when you need the capabilities.

Digital Foundation

First, there is the digital foundation. This includes the core

APIs that provide access to tasks and data. All the APIs rely

on in-memory computing.

Over time streaming analytics and machine and deep learn-

ing get added to augment the APIs with real-time intelligence

and decision automation. These help improve customer

experience and critical business operations initiatives. The

need for both real-time analytics and real-time decision

automation requires that they run in the same IMC platform

that supports the APIs.

Figure 3. Sync or CDC

Figure 4. Digital Transformation Layers

https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1

8 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

While API management is more task-oriented and part of a

structured process, streaming analytics is not generally built

on the same types of APIs you expose to customers. Stream-

ing analytics involves building compute tasks to process and

react to streams of events such as customer interactions, IoT,

or other real-time activities. This might be built on streaming

API technology or messaging such as Apache Kafka.

Doubling the loyal customer base can double revenues, and

more than double profits. It is important to remember that

the goal of digital transformation is to improve the cus-

tomer experience and to help increase customer satisfaction,

retention, and spending—which in turn increases revenues

and profits. The best way to monitor and improve every

experience is with real-time event processing or streaming

analytics. This is accomplished by monitoring and reacting

to key events to improve each customer’s experience. If you

can identify and fix all issues with customers, you can reduce

attrition.

You might use the following setup for streaming analytics

which is increasingly common and often referred to as KISS:

•	Apache Kafka for event streaming

•	Apache Ignite for data management and collocated
computing

•	Apache Spark for stream processing

•	Spring (including Spring Boot or Data) for developing APIs
or code to process the data

Many companies use different combinations for their appli-

cations. Machine learning and deep learning takes analytics

one step further by identifying and automating the responses

to various important events. It is implemented as collocated

compute against any streaming or other data about interac-

tions. Model training, testing, and execution can be run in

parallel against a combination of streaming and stored data.

IMC makes this possible by scaling out to support the parallel

workloads.

Digital Business Layer

On top of the foundation are the new applications and pro-

cesses that deliver the customer experience, as well as where

the customer experience is monitored and managed. There

should exist some version of business process management

(BPM) driven by process architects. Processes must be mod-

eled, implemented, and continually improved, like any other

BPM initiative. You can also expect cloud integration as you

consume external APIs and combine them with your own

APIs.

You also need real-time data management and governance.

With traditional data management, it used to be that indi-

vidual systems were responsible for their own data quality.

Master data management (MDM) and data quality controls

were mostly implemented to help merge data for a data

warehouse, and build a single view of the business across

disparate systems outside of the transactional applications

(after the fact). Any errors would usually get flagged as

exceptions and then fixed manually by people.

However, once you rely on real-time processes, bad data

in transactions is no longer acceptable. It simply takes too

long to have people manually fix exceptions. Data must be

accurate and consistent from the beginning to help ensure

customers always get quick responses.

The best approach is to validate data at the point of entry

with some combination of data quality and MDM. Some best

practices include more self-service steps to confirm data is

correct, rather than rely on internal corrective procedures.

The need for real-time data management is the reason

why a chief data officer and data architects eventually get

included: data management and data governance must

change to support real-time business. You can expect to

implement real-time data integration, data quality, and even

MDM because data consistency is critical. Several in-memory

computing initiatives have started implementing real-time

MDM and providing master data in memory as one of their

Solving a Persistent Customer Service
Problem with In-Memory Computing
A leading health and fitness company had a challenge with

monthly membership payments. Whenever a member paid

online, the payment was submitted to a batch-based system

that processed the payment overnight. As a result, it could

take nearly a day to update the customer’s balance. To the

customer, it looked like the payment was not accepted, and

they kept trying to pay. This glitch increased costs, because

someone had to go in and reverse the extra payments. It

also led to dissatisfied customers who would sometimes

cancel their memberships.

The company used in-memory computing to fix this

problem. Now whenever a payment is made, an API receives

the request, updates the balance information in memory,

and then passes the transaction to the back-end system.

Whenever a customer checks to confirm that their payment

was processed, the system looks up the account status in

memory, which immediately shows the payment as received.

9 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

first projects. It helps guarantee the system can support

real-time data validation. MDM is also a relatively low-risk,

low-volume first project for in-memory computing, with a

fast payback for customer-facing applications.

There should also be clear focus on the customer experi-

ence. Customer experience management is not a single tool.

Rather, it is a set of tools that support the process of contin-

uously monitoring and improving the customer experience.

Your business process improvement and your analytics and

machine/deep learning should really be driven by this disci-

pline. The measured customer experience improvement is

the justification you need to pay for these projects. This is

why you need to be aligned with the executive sponsors

responsible for the customer experience.

BEST PRACTICE 5: FREE YOUR DATA!
NOW!

This is a simple rule. To have data readily available for use

in a given project, you first need to unlock it from existing

applications. So, plan ahead and make sure certain projects

that unlock the data happen in advance, before the data is

needed. The alternative is that you open up the data and

build out the project that uses that data at the same time.

Another important consideration: make sure you consider

where to implement the IMC architecture to solve any

challenges with speed and scale. If you can solve all the

challenges by implementing IMC with the APIs, for example,

and as a result do not need to implement it in between an

existing application and database, then just implement IMC

with the APIs. This saves time and cost for the rollout of new

business initiatives. The API layer can then be used to unlock

the data for other needs, such as HTAP collocated with the

APIs.

BEST PRACTICE 6: DESIGN WITH HTAP IN
MIND

Hopefully it is clear by now that you will need to extend APIs

using HTAP. Therefore, any new APIs must be designed with

HTAP in mind. But there is more than one style of HTAP to

consider.

IMC technologies like Apache Ignite are often used for real-

time analytics as part of a transaction, for streaming analyt-

ics, or even stand-alone analytics independent of any events

or transactions that could be triggered at any time. All three

can be considered HTAP. In general, HTAP means you run

your analytics in the same place as the transactions.

Some people refer to in-process HTAP, the ability to execute

analytics and automation during the transaction or opera-

tion/ interaction to influence that interaction. This is the true

purpose of HTAP. Otherwise you could build a separate real-

time streaming pipeline and deliver relatively low latency

real-time analytics. Examples of in-process HTAP including

fraud detection, personalization and real-time cross-selling/

up-selling.

HTAP can vary based on how you need to collocate the

transactions and analytics, and the resulting deployment

model that is required. There are at least three different

models:

•	API-centric HTAP where you need to add speed and
scale to an API, but it is all about running something as
part of the API. In this case the API should determine
the deployment model. This is usually Docker and
Kubernetes.

•	Data-centric API HTAP where you need to run analytics
built around the data distribution and scalability or data
lifecycle, but you need to access it as an API. In this case
the data grid should control the API deployment lifecycle.
This may or may not be the same deployment model as
existing APIs.

•	Data-centric compute HTAP which is raw compute.
Machine and deep learning is an example. It may not be
“an API” a consumer invokes. This may be continuously
running model training, testing and execution in parallel
in the background.

Make sure to look ahead and consider which models you

need. In general many companies only use API-centric HTAP

for their APIs, and the compute grid for collocated computing

at scale for streaming analytics and machine and deep learn-

ing. But the service grid pattern is used as well.

Figure 5. API-Centric HTAP

10 © 2019 GridGain Systems, Inc.

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

BEST PRACTICE 7: KEEP PRIORITIZING
REAL-TIME PROJECTS BASED ON A
GREATER PLAN

As mentioned throughout, plan to use the same in-memory

computing technology across existing and new applications,

APIs and analytics. It enables you to add speed and scale to

existing applications. It also helps you succeed with digital

transformation and becoming a real-time business because

it:

•	Opens up and combines data across existing applications
for new uses, such as supporting new APIs that can be
consumed by anyone.

•	 Supports new workloads by scaling horizontally, which
makes it easier to deliver new capabilities in days without
having to change existing applications.

•	Allows you to ingest massive amounts of data in
real-time and combine it with existing data, during
transactions and interactions, to streamline, react to, and
improve each step of the customer’s experience.

Keep in mind that this is a journey that requires careful plan-

ning. You might need to implement projects in a certain

order, so that for each step you have already built out the

parts to make a given project succeed and to get a positive

return on each investment.

Remember the same guidelines discussed in Part 1 of this

eBook series Building an In-Memory Computing Foundation

and Roadmap:

1. Review any requests for hardware and additional
software licenses. Ask whether in-memory computing
would make sense. Many such projects are adding
vertical scalability to handle increasing loads in the
short term, when in fact the better longer-term answer
is in-memory computing, perhaps even outside the
applications.

2. Review any database purchases or re-platforming
projects that rip out and replace an existing database.
New purchases are often being done to improve
performance and scalability. In-memory computing
might be the better answer, especially if performance
and scalability issues are due to large read- and data-
intensive computing workloads coming from new APIs
and apps.

3. Review all the backend sources for new API
development. Determine what additional loads will be
created and consider whether the use of in-memory
computing or other technologies would lead to a better
architecture.

4. Consider whether to add speed and scale to existing
systems before building new APIs. Existing systems
need to be able to handle the additional loads. But as
mentioned, it is also possible the best place to add the
speed and scale is only with the APIs, not the existing
applications.

5. Consider grouping projects together that access the same
systems. Many companies have not sufficiently enforced
a common access layer and implemented a single in-
memory computing layer that controls all write access
for applications from different parts of the company.
This can create more work in the end trying to maintain
consistency across applications. Commitment to a
common layer is a lower-cost and lower-risk approach (if
possible).

6. Order your projects by understanding your data
dependencies for each project, and knowing what data
needs to be in-memory for each project to succeed. If
a project is dependent on other data being in-memory,
either work on moving that data into memory first, or
combine the projects.

NEXT STEPS: PLAN AHEAD TOWARDS
REAL-TIME/ STREAMING ANALYTICS AND
DECISION AUTOMATION

The focus of this eBook was on how to add speed and

scale to new apps and APIs to support mainstream digital

transformation and other major initiatives. The next eBooks

are guides for each type of project you might tackle in your

journey. What often comes after implementing APIs is add-

ing real-time analytics or decision automation using newer

technologies such as machine and deep learning.

Different project types include:

•	Building an In-Memory Computing Foundation and
Roadmap

•	Adding Speed and Scale to Existing Applications

•	Adding speed and scale to new apps and APIs (current
eBook)

•	Building real-time and streaming analytics

•	 Implementing HTAP

•	 Leveraging and integrating with cloud services

•	Adding machine and deep learning to help automate
decisions

For more information on any of these eBooks, related webi-

nars, or customer examples, visit the In-Memory Computing

Best Practices for Digital Transformation Resource Center.

https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/ebooks/best-practices-foundation-roadmap-part-1
https://www.gridgain.com/resources/in-memory-computing-resources/digital-transformation
https://www.gridgain.com/resources/in-memory-computing-resources/digital-transformation

© 2019 GridGain Systems. All rights reserved. This document is provided “as is”. Information and views expressed in this document, including URL and other web site references,
may change without notice. This document does not provide you with any legal rights to any intellectual property in any GridGain product. You may copy and use this document for
your internal reference purposes. GridGain is a trademark or registered trademark of GridGain Systems, Inc. Windows, .NET and C# are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Java, JMS and other Java-related products and specifications are either registered trademarks or trademarks
of Oracle Corporation and its affiliates in the United States and/or other countries. Apache, Apache Ignite, Ignite, the Apache Ignite logo, Apache Spark, Spark, Apache Hadoop,
Hadoop, Apache Camel, Apache Cassandra, Cassandra, Apache Flink, Apache Flume, Apache Kafka, Kafka, Apache Rocket MQ, Apache Storm are either registered trademarks
or trademarks of the Apache Software Foundation in the United States and/or other countries. All other trademarks and trade names are the property of their respective owners
and used here for identification purposes only.

11

Part 3: Building New Apps and APIs Best Practices for Digital Transformation with In-Memory Computing

July 3, 2019

About GridGain Systems
GridGain Systems is revolutionizing real-time data access and processing with the GridGain in-memory computing platform built

on Apache® Ignite™. GridGain and Apache Ignite are used by tens of thousands of global enterprises in financial services, fintech,

software, e-commerce, retail, online business services, healthcare, telecom and other major sectors, with a client list that includes

ING, Raymond James, American Express, Societe Generale, Finastra, IHS Markit, ServiceNow, Marketo, RingCentral, American

Airlines, Agilent, and UnitedHealthcare. GridGain delivers unprecedented speed and massive scalability to both legacy and greenfield

applications. Deployed on a distributed cluster of commodity servers, GridGain software can reside between the application and data

layers (RDBMS, NoSQL and Apache® Hadoop®), requiring no rip-and-replace of the existing databases, or it can be deployed as an

in-memory transactional SQL database. GridGain is the most comprehensive in-memory computing platform for high-volume ACID

transactions, real-time analytics, web-scale applications, continuous learning and hybrid transactional/analytical processing (HTAP).

For more information on GridGain products and services, visit www.gridgain.com.

Contact GridGain Systems
To learn more about how GridGain can help your business, please email our sales team at sales@gridgain.com, call us at

+1 (650) 241-2281 (US) or +44 (0)208 610 0666 (Europe), or go to complete our contact form at www.gridgain.com/contact

and we will contact you.

http://www.gridgain.com
mailto:sales@gridgain.com
http://www.gridgain.com/contact

